1 / 3

Chapter 4 Summary

Chapter 4 Summary. Scatter diagrams of data pairs (x , y) are useful in helping us determine visually if there is any relation between x and y values and, if so, how strong the relation might be. We call x the explanatory variable and y the response variable. Summary cont.

gauri
Télécharger la présentation

Chapter 4 Summary

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 4 Summary Scatter diagrams of data pairs (x , y) are useful in helping us determine visually if there is any relation between x and y values and, if so, how strong the relation might be. We call x the explanatory variable and y the response variable.

  2. Summary cont. The correlation coefficient r gives a numerical measurement assessing the strength of a linear relationship between two variables x and y based on a random sample of data pairs (x , y). The value of r ranges from -1 to 1, with 1 indicating perfect positive linear correlation, -1 indicating perfect negative linear correlation and 0 indicating no linear correlation. The closer the sample statistic r is to 1 or -1, the stronger the linear correlation.

  3. Summary cont. If the scatter diagram and the correlation coefficient r indicate a linear relationship, then we use the least-squares criterion to develop the equation of the least-squares line between the explanatory variable x and the response variable y Where is the value of y predicted by the least-squares line, a is the y-intercept and b is the slope. The coefficient of determination is a value that measures the proportion of variation in y explained by the least-squares line.

More Related