1 / 31

OCHSNER Borehole heat exchangers with CO 2 Dr. Gerald Lutz

OCHSNER Borehole heat exchangers with CO 2 Dr. Gerald Lutz. Contents:. Benefit of using CO 2 as heat transfer medium Functionality of a CO 2 - tube Installation example of a CO 2 -tube. Classification of renewable energy sources.

genna
Télécharger la présentation

OCHSNER Borehole heat exchangers with CO 2 Dr. Gerald Lutz

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. OCHSNER Borehole heat exchangers with CO2 Dr. Gerald Lutz

  2. Contents: • Benefit of using CO2 as heat transfer medium • Functionality of a CO2 - tube • Installation example of a CO2-tube

  3. Classification of renewable energy sources Quelle:EHPA (European Heat Pump Association) classification of ambient heat

  4. Different variants for the energetic use of ambient heat from the ground • Heating of air by leading it through a gravel zone • Groundwater as a heat source • Direct expansion/flat collectors • Glykol- and water- heat pipes • Heat pipes without circulation pumps Quelle: Ehrbar, M. ;Peterlunger, A.: Pumpenlose Erdwärmesonde: Schlussbericht Potenzialabschätzung, Machbarkeitsstudie energetisch und wirtschaftlich, Interstaatliche Hochschule für Technik Buchs, (o.J.) Buchs, S.8f.

  5. Heating of air by leading it through a gravel zone Quelle: Ehrbar, M. ;Peterlunger, A.: Pumpenlose Erdwärmesonde: Schlussbericht Potenzialabschätzung, Machbarkeitsstudie energetisch und wirtschaftlich, Interstaatliche Hochschule für Technik Buchs, (o.J.) Buchs, S.8f.

  6. Different variants for the energetic use of ambient heat from the ground • Heating of air by leading it through a gravel zone • Groundwater as a heat source • Direct expansion/flat collectors • Glykol- and water- heat pipes • Heat pipes without circulation pumps Quelle: Ehrbar, M. ;Peterlunger, A.: Pumpenlose Erdwärmesonde: Schlussbericht Potenzialabschätzung, Machbarkeitsstudie energetisch und wirtschaftlich, Interstaatliche Hochschule für Technik Buchs, (o.J.) Buchs, S.8f.

  7. Groundwater as a heat source • highest COP. • A constant temperature from + 8 °C to + 12 °C • The groundwater is pumped from the delivery well to the heat pump and from there 15 meters to the sink well. Quelle: Ochsner

  8. Different variants for the energetic use of ambient heat from the ground • Heating of air by leading it through a gravel zone • Groundwater as a heat source • Direct expansion/flat collectors • Glykol- and water- heat pipes • Heat pipes without circulation pumps Quelle: Ehrbar, M. ;Peterlunger, A.: Pumpenlose Erdwärmesonde: Schlussbericht Potenzialabschätzung, Machbarkeitsstudie energetisch und wirtschaftlich, Interstaatliche Hochschule für Technik Buchs, (o.J.) Buchs, S.8f.

  9. Direct expansion/flat collectors • refrigerant cycle of the heat pump is used directly • no heat exchangers from brine to R 407C needed • Also no brine cirulating pump is needed • With the brine system the brine circulates • in horizontal collector tubes, or • in trenches Quelle: Ochsner

  10. Different variants for the energetic use of ambient heat from the ground • Heating of air by leading it through a gravel zone • Groundwater as a heat source • Direct expansion/flat collectors • Glykol- and water- heat pipes • Heat pipes without circulation pumps Quelle: Ehrbar, M. ;Peterlunger, A.: Pumpenlose Erdwärmesonde: Schlussbericht Potenzialabschätzung, Machbarkeitsstudie energetisch und wirtschaftlich, Interstaatliche Hochschule für Technik Buchs, (o.J.) Buchs, S.8f.

  11. Glykol- and water- heat pipes • The brine circulates in earth taps around 100 m deep Quelle: Ochsner

  12. Different variants for the energetic use of ambient heat from the ground • Heating of air by leading it through a gravel zone • Groundwater as a heat source • Direct expansion/flat collectors • Glykol- and water- heat pipes • Heat pipes without circulation pumps using CO2 Quelle: Ehrbar, M. ;Peterlunger, A.: Pumpenlose Erdwärmesonde: Schlussbericht Potenzialabschätzung, Machbarkeitsstudie energetisch und wirtschaftlich, Interstaatliche Hochschule für Technik Buchs, (o.J.) Buchs, S.8f.

  13. Benefit of using CO2-tubes Benefit of CO2 as a heat transfer medium • CO2 is non-toxic • not flammable • Greenhouse relevance is neclectable (compared to other refrigerants !) (GWP=1) • Ozon deplating potential (ODP=0) • not water endangering • cheap • no special regulations for its disposal

  14. Benefit of using CO2-tubes Disadvantages of conventional working fluids (Prophylen,- oder Ethylenglykol) • Very exact definition of the glykol concentration • missing addition of inhibitors is resulting in corrosions

  15. Thermodynamic characteristics of CO2- subcritical and transcritical cyclic process • high volumetric cooling capacity (6 – 8 times higher as f.e. R407C, R717) small volumetric flow rates smaller pressure losses smaller tube profiles • low critical temperature 31,1°C, and a high critical pressure 73,8 bar. • Difficult to use within the refrigerant cycle because of flow temp. of >35˚C. • Changing of steam pressure with 1 bar/K. • Pressure of more than 100 bar with flow-temp. of >30˚C

  16. Transcritical CO2-process (Lorentzen Prozess) Rieberer, R; Halozan,H.:CO2 als Kältemittel, Institut für Wärmetechnik TU-Graz (2004)

  17. Comparison of CO2 with other refrigerants • Potential to ozon layer destruction and greenhouse effect • Critical temperature and critical pressure

  18. Functionality of CO2- tube • Principle of a heat pipe: • heat pipe transports warmth between heat source and a heat consumer • heat transfer medium is CO2) • The heat transfer medium takes up heat energy – ascends as steam inside the pipe (Thermosyphonprinzip) • delivers the energy in the heat exchanger • condensation of CO2 • CO2 descends Prinzip des Wärmerohres (Vgl.Ochsner)

  19. CO2-tube coupled with as direct expansion heat pump • Refrigerant circulates in the cooling head and evaporates there • highest performance • largest working reliability Kältekreis einer Direkterwärmungs- Wärmepumpe gekoppelt mit einer CO2-Sonde. Ochsner Wärmepumpen GmbH

  20. Single tube system/ double tube system Danger of interruption liquid  und CO2-steam  If diameter is to large Separation of liquid and gas phase Einrohrsonde/Zweirohrsonde. Vgl. Ehrbar, M.)

  21. CO2-tube high-grade steel pipe: Maximum capacity and length – dependency on tube dimension FKW Hannover Prof.H. Kruse

  22. Installation-example: object data Quelle: Objektdaten und Anlagenart des Installations-Beispiels

  23. heating system Quelle: Objektdaten und Anlagenart des Installations-Beispiels

  24. Drilling • borehole with depth of 100 m Quelle: Errichtung einer Bohrung für die Einbringung einer CO2-Wellrohrsonde (Ochsner GmbH)

  25. Tube • 100 m • ambient heat 15 C • developing pressure 50 bar • pressure resistant, flexible high-grade steel pipe • CO2 diffuses by conv. PE tubes Quelle: CO2-high-grade steel pipe (Ochsner GmbH)

  26. CO2-tube – installation tunnel Quelle: Ochsner

  27. Bringing in of the tube Quelle: Einbringung derCO2-Wellrohrsonde (Ochsner GmbH)

  28. Connection of the CO2-tube Distance CO2-tube – heat pump not more than 25 meters. Refrigerant leading pipes and cooling head have to be isolated Quelle: CO2-Erdwärmesonde (Ochsner GmbH)

  29. Seasonal Performance Figure Quelle: Monthly performance figure and seasonal performance for heating season 2006/2007 (Ochsner GmbH)

  30. Advantages of the CO2-tube • Advantages of CO2-as a heat transfer medium • no circulating pumps: higher SPF than conventional earth tubes (conventional pumps have a running capacity of 200 W with SFH ~ 360 kWh 15-20% higher JAZ) • environmental friendlyness: lower CO2-emissions because of higher working reliability by closed cycle without mobile parts • lower investment costs

  31. Thank you for your interest!

More Related