1.02k likes | 1.28k Vues
Image Transforms. Instructed by : J . Shanbezadeh Email : Shanbehzadeh@gmail.com. Contents. Introduction Applications of Image Transforms Types of Image Transforms 2-D Transform Basis Image (m 1 ,m 2 ) Reverse 2-D Transform Basis Inverse Transform Image (m 1 ,m 2 )
E N D
Image Transforms Instructed by : J. Shanbezadeh Email : Shanbehzadeh@gmail.com Jamshid Shanbehzadeh
Contents • Introduction • Applications of Image Transforms • Types of Image Transforms • 2-D Transform • Basis Image (m1,m2) • Reverse 2-D Transform • Basis Inverse Transform Image (m1,m2) • 2-D Unitary Transform • Separable Transform • Forward Transform • Reverse Transform • Unitary Matrix(Transform) • Orthogonal Matrix(Transform) • Separable Transform • Forward Separable Transform • Inverse Separable Transform • Fourier Transform • Forward Fourier Transform • Inverse Fourier Transform • Fourier Transform(Separable) • Fourier Transform Basis Functions • Fourier Transform Properties • Fourier Transform Phase Information • Translation Property • Rotation Property • Cosine transform • Basis functions • Basis Images • Cosine symmetry • Sine Transform • Basis functions • 2-D sine transform • Hartley Transform • Hadamard Transform • Basis Functions • Basis Images • Principle Components Analysis Jamshid Shanbehzadeh
Applications of Image Transforms • Extracting Features from Images • In Fourier Transform, the average dc term is proportional to the average image amplitude • Image Compression • Dimensionality Reduction Jamshid Shanbehzadeh
Contents • Introduction • Applications of Image Transforms • Types of Image Transforms • 2-D Transform • Basis Image (m1,m2) • Reverse 2-D Transform • Basis Inverse Transform Image (m1,m2) • 2-D Unitary Transform • Separable Transform • Forward Transform • Reverse Transform • Unitary Matrix(Transform) • Orthogonal Matrix(Transform) • Separable Transform • Forward Separable Transform • Inverse Separable Transform • Fourier Transform • Forward Fourier Transform • Inverse Fourier Transform • Fourier Transform(Separable) • Fourier Transform Basis Functions • Fourier Transform Properties • Fourier Transform Phase Information • Translation Property • Rotation Property • Cosine transform • Basis functions • Basis Images • Cosine symmetry • Sine Transform • Basis functions • 2-D sine transform • Hartley Transform • Hadamard Transform • Basis Functions • Basis Images • Principle Components Analysis Jamshid Shanbehzadeh
Types of Image Transforms • Unitary Transforms • Fourier Transforms • Cosine, Sine, Hartley Transforms • Hadamard, Haar • Wavelet Transforms • Ridglet, Curvelet, Contourlet Jamshid Shanbehzadeh
Contents • Introduction • Applications of Image Transforms • Types of Image Transforms • 2-D Transform • Basis Image (m1,m2) • Reverse 2-D Transform • Basis Inverse Transform Image (m1,m2) • 2-D Unitary Transform • Separable Transform • Forward Transform • Reverse Transform • Unitary Matrix(Transform) • Orthogonal Matrix(Transform) • Separable Transform • Forward Separable Transform • Inverse Separable Transform • Fourier Transform • Forward Fourier Transform • Inverse Fourier Transform • Fourier Transform(Separable) • Fourier Transform Basis Functions • Fourier Transform Properties • Fourier Transform Phase Information • Translation Property • Rotation Property • Cosine transform • Basis functions • Basis Images • Cosine symmetry • Sine Transform • Basis functions • 2-D sine transform • Hartley Transform • Hadamard Transform • Basis Functions • Basis Images • Principle Components Analysis Jamshid Shanbehzadeh
2-D Transforms Forward transform of the N1*N2 image array F(n1,n2) : F(0,0)=f(0,0).A(0,0,0,0)+f(0,1)A(0,1,0,0)+f(0,2)A(0,2,0,0)+….+f(0,N2-1)A(0,N2-1,0,0) : the Forward Transform Kernel • به ازای هر m1 و m2 یک تصویر پایه ساخته می شود. • n1 و n2 پیکسلهای تصویر در فضای جدید هستند. Jamshid Shanbehzadeh
Basis Image (m1,m2) Jamshid Shanbehzadeh
Basis Image (m1,m2) JamshidShanbehzadeh
پیکسلهای تصویر اصلی را در پیکسلهای تصویر پایه، نظیر به نظیر در یکدیگر ضرب داخلی می نماییم. Jamshid Shanbehzadeh
مقایسه تبدیل یک بعدی و دوبعدی یعنی کل تصویر را پیمایش می نمایند. Jamshid Shanbehzadeh
Reverse 2-D Transforms A reverse or inverse transformation provides a mapping from the transform domain to the image space as given by : B(n1,n2; m1,m2) : the Inverse Transform Kernel کرنل مورد استفاده در تبدیل تصاویر بایستی معکوس پذیر باشد. Jamshid Shanbehzadeh
Basis Inverse Transform Image (m1,m2) Jamshid Shanbehzadeh
به ازای هر n1 و n2 یک تصویر پایه ساخته میشود، اگر تصاویر پایه بر هم عمود باشند. Jamshid Shanbehzadeh
2-D Unitary Transforms The transformation is unitary if the following orthonormality conditions are met: Jamshid Shanbehzadeh
Inner Product Jamshid Shanbehzadeh
Inner Product Jamshid Shanbehzadeh
ضرب داخلی تصاویر Image Size(IS) =512 X 512 Number of Operations = IS X IS(Mul)+(IS X IS-1) (Addition) for one element =512 X 512(Mul) +(512 X 512 -1)(Addition) Number of operations for all = 512 X 512 (512 X 512(Mul) +(512 X 512 -1)(Addition) ) Jamshid Shanbehzadeh
بلوک بندی تصاویر برای کاهش حجم محاسبات، تصاویر را به بلاکهایی تقسیم می نماییم: Image Size(IS) =512 X 512 Block Size(BS) =8 X 8 Number of Blocks(NB) =128 X 128 Size of Basis Image(SBI) =8 X 8 Number of Operations = NB X {BS X SBI(Mul)+(BS-1) (Addition)} =128 X 128{(64 X 64)Mult+63(Addition)} Number Operations = 67,108,864(Multiplications)+1,032,192(additions) حجم محاسبات علیرغم کاهش، زیاد است. Jamshid Shanbehzadeh
Matrix multiplication • If we perform matrix multiplication, then we have for two N X N matrixes: • Number of operations (NO)= N X N {N(Mul) + (N-1)(addition)} • Number of Image Blocks (NIB) = Image Size/(NXN) • Total Number of Operations(TNO)=NIB X NO 16,384X(512(Mult)+448(additions))=8,388,608(Multi)+7,340,032(Additions) حجم محاسبات بسیار کاهش می باشد. Jamshid Shanbehzadeh
Contents • Introduction • Applications of Image Transforms • Types of Image Transforms • 2-D Transform • Basis Image (m1,m2) • Reverse 2-D Transform • Basis Inverse Transform Image (m1,m2) • 2-D Unitary Transform • Separable Transform • Forward Transform • Reverse Transform • Unitary Matrix(Transform) • Orthogonal Matrix(Transform) • Separable Transform • Forward Separable Transform • Inverse Separable Transform • Fourier Transform • Forward Fourier Transform • Inverse Fourier Transform • Fourier Transform(Separable) • Fourier Transform Basis Functions • Fourier Transform Properties • Fourier Transform Phase Information • Translation Property • Rotation Property • Cosine transform • Basis functions • Basis Images • Cosine symmetry • Sine Transform • Basis functions • 2-D sine transform • Hartley Transform • Hadamard Transform • Basis Functions • Basis Images • Principle Components Analysis Jamshid Shanbehzadeh
Separable Transforms The transformation is said to be separable if its kernels can be written in the form Where the kernel subscripts indicate row and column one-dimensional transform operations. Jamshid Shanbehzadeh
Separable Transforms A separable two-dimensional unitary transform can be computed in two steps: First, a one-dimensional transform is taken along each column of the image, yielding Next, a second one-dimensional unitary transform is taken along each row of P(m1,m2), giving Jamshid Shanbehzadeh
Separable Transforms Jamshid Shanbehzadeh
Contents • Introduction • Applications of Image Transforms • Types of Image Transforms • 2-D Transform • Basis Image (m1,m2) • Reverse 2-D Transform • Basis Inverse Transform Image (m1,m2) • 2-D Unitary Transform • Separable Transform • Forward Transform • Reverse Transform • Unitary Matrix(Transform) • Orthogonal Matrix(Transform) • Separable Transform • Forward Separable Transform • Inverse Separable Transform • Fourier Transform • Forward Fourier Transform • Inverse Fourier Transform • Fourier Transform(Separable) • Fourier Transform Basis Functions • Fourier Transform Properties • Fourier Transform Phase Information • Translation Property • Rotation Property • Cosine transform • Basis functions • Basis Images • Cosine symmetry • Sine Transform • Basis functions • 2-D sine transform • Hartley Transform • Hadamard Transform • Basis Functions • Basis Images • Principle Components Analysis Jamshid Shanbehzadeh
Forward Transform F and f denote the matrix and vector representations of a signal array. F and f be the matrix and vector forms of the transformed signal. The two-dimensional unitary transform is given by F=Af Where A is the forward transformation matrix. Jamshid Shanbehzadeh
Contents • Introduction • Applications of Image Transforms • Types of Image Transforms • 2-D Transform • Basis Image (m1,m2) • Reverse 2-D Transform • Basis Inverse Transform Image (m1,m2) • 2-D Unitary Transform • Separable Transform • Forward Transform • Reverse Transform • Unitary Matrix(Transform) • Orthogonal Matrix(Transform) • Separable Transform • Forward Separable Transform • Inverse Separable Transform • Fourier Transform • Forward Fourier Transform • Inverse Fourier Transform • Fourier Transform(Separable) • Fourier Transform Basis Functions • Fourier Transform Properties • Fourier Transform Phase Information • Translation Property • Rotation Property • Cosine transform • Basis functions • Basis Images • Cosine symmetry • Sine Transform • Basis functions • 2-D sine transform • Hartley Transform • Hadamard Transform • Basis Functions • Basis Images • Principle Components Analysis Jamshid Shanbehzadeh
Reverse Transform The inverse transform is f = Bf B represents the inverse transformation matrix B = A-1 Jamshid Shanbehzadeh
Contents • Introduction • Applications of Image Transforms • Types of Image Transforms • 2-D Transform • Basis Image (m1,m2) • Reverse 2-D Transform • Basis Inverse Transform Image (m1,m2) • 2-D Unitary Transform • Separable Transform • Forward Transform • Reverse Transform • Unitary Matrix(Transform) • Orthogonal Matrix(Transform) • Separable Transform • Forward Separable Transform • Inverse Separable Transform • Fourier Transform • Forward Fourier Transform • Inverse Fourier Transform • Fourier Transform(Separable) • Fourier Transform Basis Functions • Fourier Transform Properties • Fourier Transform Phase Information • Translation Property • Rotation Property • Cosine transform • Basis functions • Basis Images • Cosine symmetry • Sine Transform • Basis functions • 2-D sine transform • Hartley Transform • Hadamard Transform • Basis Functions • Basis Images • Principle Components Analysis Jamshid Shanbehzadeh
Unitary Matrix (Transform) For a unitary transformation, the matrix inverse is given by A-1 = A*T A is said to be a unitary matrix Jamshid Shanbehzadeh
Contents • Introduction • Applications of Image Transforms • Types of Image Transforms • 2-D Transform • Basis Image (m1,m2) • Reverse 2-D Transform • Basis Inverse Transform Image (m1,m2) • 2-D Unitary Transform • Separable Transform • Forward Transform • Reverse Transform • Unitary Matrix(Transform) • Orthogonal Matrix(Transform) • Separable Transform • Forward Separable Transform • Inverse Separable Transform • Fourier Transform • Forward Fourier Transform • Inverse Fourier Transform • Fourier Transform(Separable) • Fourier Transform Basis Functions • Fourier Transform Properties • Fourier Transform Phase Information • Translation Property • Rotation Property • Cosine transform • Basis functions • Basis Images • Cosine symmetry • Sine Transform • Basis functions • 2-D sine transform • Hartley Transform • Hadamard Transform • Basis Functions • Basis Images • Principle Components Analysis Jamshid Shanbehzadeh
Orthogonal Matrix (Transform) A real unitary matrix is called an orthogonal matrix. For such a matrix, A-1 = AT Jamshid Shanbehzadeh
Contents • Introduction • Applications of Image Transforms • Types of Image Transforms • 2-D Transform • Basis Image (m1,m2) • Reverse 2-D Transform • Basis Inverse Transform Image (m1,m2) • 2-D Unitary Transform • Separable Transform • Forward Transform • Reverse Transform • Unitary Matrix(Transform) • Orthogonal Matrix(Transform) • Separable Transform • Forward Separable Transform • Inverse Separable Transform • Fourier Transform • Forward Fourier Transform • Inverse Fourier Transform • Fourier Transform(Separable) • Fourier Transform Basis Functions • Fourier Transform Properties • Fourier Transform Phase Information • Translation Property • Rotation Property • Cosine transform • Basis functions • Basis Images • Cosine symmetry • Sine Transform • Basis functions • 2-D sine transform • Hartley Transform • Hadamard Transform • Basis Functions • Basis Images • Principle Components Analysis Jamshid Shanbehzadeh
Separable Transforms If the transform kernels are separable such that Where AR and AC are row and column unitary transform matrices. Jamshid Shanbehzadeh
Forward Separable Transforms The transformedimagematrixcan be obtained from the image matrix by F Jamshid Shanbehzadeh
Inverse Separable Transforms The inversetransformation is given by F = BC F BRT Where BC = AC-1 and BR = AR-1 Jamshid Shanbehzadeh
Contents • Introduction • Applications of Image Transforms • Types of Image Transforms • 2-D Transform • Basis Image (m1,m2) • Reverse 2-D Transform • Basis Inverse Transform Image (m1,m2) • 2-D Unitary Transform • Separable Transform • Forward Transform • Reverse Transform • Unitary Matrix(Transform) • Orthogonal Matrix(Transform) • Separable Transform • Forward Separable Transform • Inverse Separable Transform • Fourier Transform • Forward Fourier Transform • Inverse Fourier Transform • Fourier Transform(Separable) • Fourier Transform Basis Functions • Fourier Transform Properties • Fourier Transform Phase Information • Translation Property • Rotation Property • Cosine transform • Basis functions • Basis Images • Cosine symmetry • Sine Transform • Basis functions • 2-D sine transform • Hartley Transform • Hadamard Transform • Basis Functions • Basis Images • Principle Components Analysis Jamshid Shanbehzadeh
Forward Fourier Transform کرنل دوبعدی جدایی پذیر Jamshid Shanbehzadeh
مقایسه تبدیل یک بعدی و دوبعدی Jamshid Shanbehzadeh
Inverse Fourier Transform Fourier Transform : Inverse Fourier Transform : Jamshid Shanbehzadeh
Fourier Transform (Separable) تبدیل دوبعدی را به صورت سینوسی و کسینوسی می نویسیم: Jamshid Shanbehzadeh
Fourier Transform (Separable) Jamshid Shanbehzadeh
Fourier transform basis functions , N=16 Jamshid Shanbehzadeh
قسمت موهومی تصاویر پایه DFT قسمت حقیقی مقادیر تصاویر پایه DFT Jamshid Shanbehzadeh
اندازه تبدیل فوریه تصویر اصلی (مبدا به وسط انتقال یافته است.) تصویر اصلی اندازه تبدیل فوریه تصویر اصلی با استفاده از لگاریتم اندازه ها فاز تبدیل فوریه Jamshid Shanbehzadeh
تصویر اصلی تبدیل فوریه آن Jamshid Shanbehzadeh
حساسیت تبدیل فوریه به چرخش دو نمونه تصویر اصلی تبدیل فوریه تصاویر چرخش یافته تصاویر تبدیل فوریه تصاویر Jamshid Shanbehzadeh
Fourier Transform Properties The spectral component at the origin of the Fourier domain is equal to N times the spatial average of the image plane. Jamshid Shanbehzadeh
Zero-frequency term at the center Multiplying the image function by factor (-1)j+k یعنی با ضرب f(x,y) در (-1)x+y مبدا تبدیل فوریه f(x,y) به مرکز مربع فرکانسی N X N متناظرش انتقال داده می شود. Jamshid Shanbehzadeh