1 / 60

WP 2. HYDROL

WP 2. HYDROL. WP2. HYDROL - Surface and groundwater hydrology. Associated processes at different scales. Presentation about: work done and work to do in the next future. Three major tasks:

halil
Télécharger la présentation

WP 2. HYDROL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. WP 2. HYDROL WP2. HYDROL - Surface and groundwater hydrology. Associated processes at different scales. Presentation about: work done and work to do in the next future

  2. Three major tasks: i) To analyze the impact of the interaction processes in water interfaces (water and sediments accumulated in dams, river beds, hyporreic zone, infiltration ponds,…) on water quality in the study basins ii) To characterize the effects of artificial recharge operations on water quality iii) To determine the likelihood of chemical compounds to reach the water bodies in concentrations exceeding a given threshold. TASKS

  3. The boundary conditions… D2.1. Characterization of processes taking place at the different interfaces within water bodies, with emphasis on reactive transport development (UPC) (month 18). Training activity: Managed artificial recharge for sustainable water management under varying climate conditions: quantitative and qualitative aspects. Organized by UPC in collaboration with UPM and IDAEA-CSIC. • So, first processes; then applications to the sites

  4. Fate of micropollutants: batch experiments (UPC + IDAEA)

  5. DOC NO3 LDet NO2 a) Alk DCF b) SMX DCF c) SMX 0.1 Figure 1: results for “Experiment 1” (individual pollutant at initial concentration of 1microg/L ). a) chemical evolution with time in the biotic NO3-reducing experiment; b) evolution with time of the average normalized concentration (with respect to the initial value C0) of diclofenac (DCF) and sulfamethoxazole (SMX) in the biotic test. “LDet” stays for Limit of Determination; c) idem in the abiotic test.

  6. DOC NO3 Alk a) NO2 DCF b) APP SMX SMX DCF APP c) Figure 2: results for “Experiment 2” (individual pollutant at initial concentration of 1mg/L ). a) chemical evolution with time in the biotic NO3-reducing experiment; b) evolution with time of the average normalized concentration (with respect to the initial value C0) of Acetaminophen (APP), DCF and SMX in the biotic test. “ c) idem in the abiotic test.

  7. a) b) c) d) Figure 3: Evolution of DCF, Nitro-DCF (NO2-DCF), and nitrite in the biotic series of “Experiment 1” (plot “a)”) and “Experiment 2” (plot “b”). Evolution of SMX, 4-Nitro-SMX (4-NO2-SMX), and nitrite in the biotic series of “Experiment 1” (plot “c)”) and “Experiment 2” (plot “d”).

  8. Fate of micropollutants: real site (UPC + IDAEA) • Based on column experiments • Artificial recharge facility • Organic matter layer: 60 cm of compost + natural soil (40 % – 60%) • Plus some iron hydroxide • The test has just started…

  9. Exchange processes: coupling cation exchange with sorption

  10. Biofilm transient impact upon recharge/ clogging (UPC + ICRA) • Soil wetting and feeding • Biofilm development • Biofilm • Dessication /scrubbing • Soil rewetting

  11. Sensor and experimental set up Coarse and sandy soil collected from the pound in 3 locations Tank to couple hydrology and biology

  12. Abiotic measurments • Soil moisture, EC and temperature • Water flow • Water suction

  13. Biotic measurments • Microlysimeter, collection of liquid samples • Dissolved oxygen, conductivity, pH/ORP nitrate, chloride and temperature • Eventuallyplanaroctopodestomeasureoxygen • Imagingsurface

  14. INFILTRATION /FEEDING P

  15. BIOFILM FORMATION P

  16. BIOFILM CLOGGING P

  17. DESSICATION/SCRUB

  18. REWETTING

  19. Processes: facies delineation/reconstruction • Very similar to CSI • With little (to no) information, reconstruct as best as possible the undersampled formation

  20. Modelling efforts on reactive transport (UPC+ UPM) • Tool development, to be started soon

  21. Realization 1 Realización 2 Realización 3 Original figure. Selection of 10 random samples Realización 50 Realización 100

  22. Realización 1 Realización 2 Realización 3 Realización 50 Realización 100 Figura original Classsical Kernel Regression Orden 2 CKR2 (Iteración 0)

  23. Realización 1 Realización 2 Realización 3 Realización 50 Realización 100 Steering Kernel Regression Orden 2 SKR2 (Iteración 1) Figura original

  24. Realización 1 Realización 2 Realización 3 Realización 50 Realización 100 Steering Kernel Regression Orden 2 SKR2 (Iteración 2) Figura original

  25. Concentric formations

  26. ARTIFICIAL RECHARGE ACTIVITIES Infiltrómetro de “Doble Anillo” En superficie En zanjas

  27. Sitio de estudio en Sant Vicenç dels Horts: Ensayos puntuales para la medición del capacidad de infiltración de la superficie de la balsa II. Interpretación

  28. Sitio de estudio en Sant Vicenç dels Horts: Ensayos puntuales para la medición del capacidad de infiltración de la superficie de la balsa III. Resultados

  29. Sitio de estudio en Sant Vicenç dels Horts: Mapa de variabilidad espacial de los parámetros físicos y hidráulicos en la superficie de la balsa de infiltración (SIP)

  30. Sitio de estudio en Sant Vicenç dels Horts: Resultados de un ensayo de inundación

  31. Sitio de estudio en Sant Vicenç dels Horts: Estado de la balsa antes del ensayo de infiltración

  32. Sitio de estudio en Sant Vicenç dels Horts: Estado de la balsa durante el ensayo Colmatación por error humano («human failure») Error de cálculo, diseño, aleatoriedad de estabilidad de las estructuras, eventos extremos, vandalismo, …

  33. Sitio de estudio en Sant Vicenç dels Horts: Estado de la balsa después del ensayo de infiltración Colmatación por efectos naturales Crecimiento de algae, trapping de coloides, sedimentación de material fino en suspencion, precipitacíon de minerales , …

  34. LOCAL INFILTRATION VARIATIONS

  35. EFFECTIVE PARAMETERS Model: I = I_0exp(- λe t) + (I_R-I_0)

  36. Sitio de estudio en Sant Vicenç dels Horts: Oscilaciones de la temperatura y su relación con el gradiente hidráulico

  37. Risk Assessment: Overview and Challenges

  38. Illustration of the Process 1) Identifying contaminant source releases & environmentally sensitive targets. 2) Data acquisition used to infer modeling parameters! Site characaterization. 3) Final task: Estimate human health risk toward decision making! Should a site be remediated or not? Is the exposed population at risk?

  39. PWijp FATijp System Failure SF OR Critical Concentrations CC11 CC12  CCij  CCnm AND Sources-Receptors CSi PRj OR AND AND AND Pathways-Processes  

  40.  Sources-Receptors CSi PRj AND Observation wells WELL1  WELLk  WELLnw OR   AND AND Pathways-Processes BPijk FATijk BPijk FATijk OR OBSk SAijk

  41. Computation of probabilities for a monitoring system of two wells:

  42. Evolution of Risk with time T: The most sensitive failure mode is the occurrence of simultaneous small sampling frequency

  43. NAPLs: Non-Aqueous Phase Liquids APPLICATIONS?so far NAPLs? • Fluids capable to stay in the subsurface in a different (non-aqueous) phase thanks to its low solubility • LNAPLs (gasoline and other Hydrocarbons)  density below water density • DNAPLs (Chlorinated solvents)  density higher than water

  44. Failure of Remediation RISK AFTER REMEDIATION C END-POINT Time

  45. Vapor flux Dissolved plume PROBLEM STATEMENT EVALUATE THE RISK IS DIFFICULT DUE TO: MANY PATHS, PROCESSES, RECEPTORS, SOURCES, SAMPLING, OBSERVATION PATH 4 PATH 3 PATH 2 PATH 1

  46. Failure due to Sampling Frequency C OBS RECEPTOR time SOURCE ZONE OBS RECEPTOR DNAPL

  47. Failure due to Bypassing C RECEPTOR OBS time SOURCE ZONE OBS RECEPTOR DNAPL

  48. Fate and transport • We need a transport model or a set of transport models to generate a large number of replicates of the system based on some uncertain parameters

  49. Model Parameters OBSERVATIONS RECEPTOR CONTAMINATED SITE

More Related