410 likes | 565 Vues
RESISTIVITY MINIMA IN BULK DISORDERED ALLOYS A. K. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata & Physics Dept., I. I. T. Kanpur, India Collaborators: S. Chakraborty, T. K. Nath & A. Das (IIT Kanpur) Investigated: A. Amorphous Co-rich magnetic alloys.
E N D
RESISTIVITY MINIMA IN BULK DISORDERED ALLOYS A. K. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata & Physics Dept., I. I. T. Kanpur, India Collaborators:S. Chakraborty, T. K. Nath & A. Das (IIT Kanpur) Investigated: A. Amorphous Co-rich magnetic alloys. B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys. C. Crystalline Cu100-xMnx, (36<x<83) cluster-glass/antiferromagnetic alloys. D. CrystallineNi – rich Ni-Fe-Cr ferromagnetic permalloys. High-resolution resistivity data down to 1.2 K, Hall effect and magnetoresistance till 1.4 K and up to 7.5 tesla.
Disordered metallic alloys Dilute limit: kF l >> 1, Boltzmann transport holds A. For amorphous alloys: (T) = (T/D)2 I(x), I(x) = Debye integral, x = D/T = 0 + T2, for T << D = 0 + T. for T > D mag(T) ~ T3/2 (higher order T2). B. For crystalline alloys: mag ~ T2 (e-m), ~ T3/2 (SG/CG). In both the above cases increases with T. INTRODUCTION Eq. (1a) Eq. (1b)
Weak-disorder limit, kF l > 1 (Ioffe-Regel criterion) Boltzmann transport breaks down Beyond the Boltzmann Picture Short => (a) Weak localization Anderson (1958); Abrahams et al. (1979); Altshuler and Aronov (1985) (b) Interaction effect or Coulomb anomaly Reviews: a) Lee and Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985). b) Dugdale, Contemp. Phys. 28, 547 (1987). INTRODUCTION (a) Localization: = e2 D N(EF) W = | i i |2= | 1 |2 + | 2 |2 + 1* 2 + 1 2* Dephasing: (i) Inelastic scattering at T > 0 (ii) Magnetic Field P(r,t) dr dt = 1/(4Dt)3/2 exp(-r2/4Dt) dr dt
0 = elastic mean free time, i = inelastic mean free time ~ [(0)-1/2 - (i)-1/2] 0 = 10-15 - 10-16 s For amorphous materials at T << D Electron – phonon scattering => 1/i ~ T2 => ~ T. Eq. (2) i = (1010 T2)-1 => i 10-12 s at 10 K Expts. by Howson and Greig: Non-magnetic CuTi/Hf/Zr glasses for 20 < T < 100 K. For T > D , e-ph. scattering => 1/i ~ T => ~ T1/2. Eq. (3) Howson and Greig: CuTi, etc., T > 100 K. B = magnetic field induced dephasing time = ћ/4eBD ( 10-12 – 10-13 s for B = 1T) Note: Phase change = e/ћ, ~ [(0)-1/2 - (B)-1/2] => ~ + B1/2 => negative magnetoresistance. INTRODUCTION
(b) e-e interaction effect: Energy difference is a source of dephasing Thermal coherence time T ~ h/kBT 10-13 s at 10 K ~ [(0)-1/2 – (T)-1/2] => ~ T1/2. Eq. (4) Expts. by Howson and Greig : CuTi & CuHf , for T < 20 K. Bergmann (1984) gave extensive experimental evidence of both localization & e-e interaction effects in thin films (2-D). INTRODUCTION
INTRODUCTION Weak scattering limit for 3d (bulk) materials: (T) = 0 + mT, where D = diffusion constant, F = screening factor. Strong scattering case: McMillan’s scaling theory of metal-insulator transition: (T) = 0[1 + (T/)1/2], Eq. (6) = correlation gap. Eqs. (5) & (6) => same form (~ T ) as in Eq. (4) Observed only at the lowest temperatures where no other faster dephasing process is present. Eq. (5) MR is + ive due to e-e interaction ~ B2 for low fields & ~ B1/2 for high fields.
So (T) varies in a sequence of T, T and T at low, intermediate and high temperatures. => In expts, only two regions (T & T or T & T) observed in the same sample. INTRODUCTION
Resistivity Fe5Co50Ni17-xCrx(BSi)28, x = 0, 5, 10, 15, Mn17(A1 - A5). Measured: ac(T), Mdc(H,T), MR = / (H,T) & (T) using closed-cycle helium refrigerator. Found: 300 = (150 - 254) cm, Tc = (395-180) K, Tmin = 20 K to > 300 K. A1-A4(FM), A5(Mixed FM/SG state for T < 50 K). Depth of minima = 0. 1 to 4.4 %. A. Amorphous Co-rich magnetic alloys
Figs. 1 - 2 :r(T)= R(T)/R(30O K) vs. T (raw data). Resolution(/): 1 in 105 Temperature stability: 0.1 K. A. Amorphous Co-rich magnetic alloys Fig. 2 Fig. 1
Figs. 3 - 4 : In () vs. In T (again raw data). All three regions observed in each sample Till now only a theoretical prediction Fits to (Eq. (5)) give 2 = 10-10, slope m, D, N(EF), etc. Interpretation questionable due to spontaneous moments Look for cleaner non-magnetic systems. A. Amorphous Co-rich magnetic alloys Fig. 3 Fig. 4 A. Das & A. K. Majumdar, PRB 43, 6042 (1991), PRB (1993), JMMM (1993), JAP(1991).
Resistivity (Ni0.5Zr0.5)1-x Alx, x = 0, 0.05, 0.1, 0.15 and 0.2 300 K = (190 – 220) cm, Tcrys. 800 K superconducting with Tc< 1.25 K, D 320 K independent of temperature (Pauli paramagnet) 80 X 10-6 emu/mole. (Cu0.36Zr0.64)1-x Alx,x = 0, 0.1, 0.15 and 0.2 300 K = (169 – 185) cm, Tcrys. 710 K SC, Tc< 1.7 K, D 220 K, ≠ f(T) 80 X 10-6 emu/mole. B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys
Fig. 5:(T) for Cu-Zr-Al till 300 K, (300 K) increases with Al(inset). Fig. 6: (T) for Ni-Zr-Al from 1.2 – 10 K, Tc(onset) < 2.5 K and is suppressed by disorder (Al). Inset of Fig. 6: Excellent fit to EEI theory (Eq.(5)) shown for x = 0.05 but superconducting fluctuations dominate below 4 K. B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys Fig. 5 Fig. 6
Fig. 7:Ni-Zr-Al and (CuZr)0.8Al0.2. e-e interaction effect, Tc<T<15 K (T) = (0) + mT Eq. (7) m = (360 - 460) (m)-1K-1/2 500 (m)-1K-1/2 (near universal value) 2 (fit to Eq. (7) 5 X 10-11, stability of T 10 mK, resolution of / 5ppm m ~ 1/D, D = (3.5 –5.5) X 10-5 m2/s, slopes of Fig. 7 indicate D ~ 1/(300 K) N(EF) ~ 1.0 (atom eV)-1. B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys
Figs. 8 & 9: D/10 < T < D/3. ~ T. Eq. (8) B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys Fig. 8 Fig. 9
Figs. 10 & 11 : D/3 < T < D. ~ T Eq. (9) 2 10-10, departure above D. Inelastic mean free path li(T) = 5 X 10-4 T-2 m from Eq. (8)& = 2 X 10-6 T-1 m from Eq. (9) and = 2 2((e2/(h)) li(T)-1/2 l0-1/2. Inelastic scattering time i calculated from L = (e2/(h))(Di)-1/2. Eq. (10) i 10-12 – 10-14 s at higher T, 0 10-15 – 10-16 s => i >> 0 justifies localization. B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys Fig. 11 Fig. 10
Fig. 12 & 13: ln vs. ln T. First convincing observation of 3 regions of QIE T. K. Nath and A. K. Majumdar, PRB 55, 5554(1997), IJMPB (1998). B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys Fig. 12 Fig. 13
B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys • Magnetoresistance • (Ni0.5Zr0.5)1-x Alx, x = 0, 0.05, 0.1, 0.15 and 0.2 Already seen that for Tc < T < 15 K, ~ T (e – e interaction). Measured MR from 2 to 20 K up to 7 T using PPMS. Found that MR is positive and very small even at 2 K & 7 T (< 0.12 %). Due to e – e interaction MR is predicted to be +ive.
B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys Eq. (11) Eq. (12)
(12) (11) (14) (13) B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys Eq. (13) Eq. (13) Eq. (14) Eq. (14)
B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys Eq. (15) Eq. (16)
B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys • Thus we find that • (S - S) & orbital contributions are indistinguishable in the low-field limit. • But in the high-field limit the (S - S) is strongly temperature dependent while the orbital is weakly temperature dependent. • Also MR due to weak localization is – ive for small S – O interaction and + ive for large S – O interaction but with a weak temperature dependence.
B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys • Fig. 14 : MR vs. external fields between 4 and 20 K. • Positive, small (< 0.12 %), & strongly temperature dependent.
B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys • Fig. 15: Longitudinal and transverse MR vs. external fields at 5K. • Isotropic, consistent with QIE.
B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys • Fig. 16:MR vs. external fields data and fit to H (Eq. 15a). • Excellent fits with R2 = 0.998 & 2 consistent with exptal. resolution • Strongly temperature dependent +ive MR implying • dominance of (s – s) contribution to e – e interaction.
B. Amorphous Ni/Cu-Zr-Al non-magnetic alloys • Fig. 17: MR vs. T at high fields and fit to - T (Eq. 15a). • Dominance of (s – s) contribution. • A. K. Majumdar, J. Magn. Magn. Mater. 263, 26(2003).
Resistivity Earlier work: B. R. Coles, Physica (1977) For x << 1 %, Kondo minimum with (T) ~ In T. For 0.1 < x < 15 %, SG (canonical), no resistivity minimum. For x > 35 %, minima around 20 K of depth < 1 %, but no quantitative analysis. C. Crystalline Cu100-xMnx (36 < x < 83) CG/AF alloys
Fig. 18: Magnetic phase diagram of Cu100-xMnx. Fig. 19: (T) data of present work : Resolution in / better than 10 ppm, data every 30 mK. x= 36, 60, 73, 76, and 83; Tmln(K) = 2.5, 16.5, 16.5, 24, 13.5; 0(cm) = 93, 176, 184, 196, 120. Depth < 1/3 %, Tmin correlate with 0and not x. T < Tmin/3:(T) = (0) + A ln T, 2 ~ 10-9 . Eq. (17) = (0) + m T1/2, 2 ~ 10-10 ( Expt. resolution) Eq. (7) Deviations random for (7) & systematic for (17). C. Crystalline Cu100-xMnx (36 < x < 83) CG/AF alloys X=83 X=36 Fig. 19 Fig. 18
Support for e-e interaction effect: (a)m = 480, 680, 620 and 560 (m)-1K-1/2. (b) = e2DN(EF), m ~ D-1/2 N(EF) = (1.4 – 2.6) X 1035 erg-1cm-3 Specific heat data : ~ N(EF) = 2.2 X 1035 erg-1cm-3 Tmin/3 < T < 30 K: (T) = 0 - mT1/2 + T3/2 + Bloch-Gruneissen Eq. (18) e-e CG lattice Excellent fits, 2 ~ 10-10. C. Crystalline Cu100-xMnx (36 < x < 83) CG/AF alloys
2 K to Tmin/3 = 0 + mT Tmin/3 to 30 K x (Tmin) m 2(10-10) m B(10-3) A 2(10-10) 0(cm) Depth (%) 36 (2.5 K) - - -0.06 5.5 77.2 4.7 93 0.04 60 (16.5 K) - 0.15 0.4 - 0.25 5.2 9.9 0.9 176 0.18 73 (16.5 K) - 0.23 1.7 - 0.40 8.4 16.7 0.4 184 0.26 76 (24 K) - 0.24 2.0 - 0.35 4.2 81 0.3 196 0.33 83 (13.5 K) - 0.08 2.5 - 0.15 4.0 386 3.8 120 0.14 C. Crystalline Cu100-xMnx (36 < x < 83) CG/AF alloys
Fig. 20: [(T) - 0] vs. T for each term, their total and the raw data. Note: The change is only 1 in 200 cm for x = 76 with Tm = 24 K. A. Banerjee & A. K. Majumdar, Phys. Rev. B 46, 8958 (1992). S. Chakraborty & A. K. Majumdar, Phys. Rev. B 53, 6235 (1996). C. Crystalline Cu100-xMnx (36 < x < 83) CG/AF alloys
Magnetoresistance TMR & LMR measured at 4.2, 20.5 and 63 K till 7.5 tesla. Found: (i) TMR & LMR are < 0.2 % except for x = 83 and are qualitatively the same. (ii) Mn-rich alloys (x >60): positive MR, x = 36: positive MR till 3 tesla and negative beyond. (iii) x > 60: High-field:/ = A + BH1/2 + C1H2 for h >> 1, Eq. (19) where h = gBH/kBT, = (e2F/42ħ)(kBT/2Dħ)1/2, A = - 1.3 , B = (gB/kBT)1/2and C1 = (1/2ne0)2 The first two terms are due to e-e interaction and the third term is the normal MR. Also at low fields:/ = CH2 + C1H2 for h <<1, Eq. (20) where C = 0.053 (gB/kBT)2 is due to e-e interaction. C. Crystalline Cu100-xMnx (36 < x < 83) CG/AF alloys
Figs. 21 & 22:TMR (/) vs. H (7.5 & 2 tesla) at 4.2 K. Good fits to Eq. (19) and (20). A is negative & B ~ temperature independent (orbital). C. Crystalline Cu100-xMnx (36 < x < 83) CG/AF alloys Fig. 21 Fig. 22
Fig. 23: Normal magnetoresistance /0 vs. H/0. It satisfies Kohler's rule till 5 tesla. (iv) x = 36:Additional cluster-glass contribution of - H2 added to Eqs. (19) & (20). It decreases with increase of temperature as in canonical spin glasses. Interpretation of / is consistent with that of (T). S. Chakraborty et al., Int. J. Mod. Phys. B 12, 2263 (1998). C. Crystalline Cu100-xMnx (36 < x < 83) CG/AF alloys
D. Ni – rich Ni-Fe-Cr ternary alloys • Fig. 24 : Ternary composition diagram showing: • Ni-rich region (Permalloy) with large µ; s & Rs changing • sign, Constant FAR ridges following Rs 0 line. • Fe – rich (Stainless/heat-resistant alloys) showing exotic magnetic phases. • Alloys in both regions show minima. Typical values are 100 µΩ cm.
D. Ni – rich Ni-Fe-Cr ternary alloys Resistivity • Fig. 25: (T)/min vs. T for some Ni-rich Ni-Fe-Cr alloys. • S47: 71-8-21, S41: 74-8-18,S34: 73-13-14, S29: 75-13-12 • All show minima at Tmin = 22, 27, 35.5, & 14 K, respectively. • Data every 50 mK below Tmin.
D. Ni – rich Ni-Fe-Cr ternary alloys • For 1.2 K < T < Tmin/2 • Very dilute alloys show Kondo minima given by • (T) =0 – m ln T. Eq. (21) • Tm & DOM depend on impurity concentration. • Minima disappear in magnetic fields. • Two level systems also show logarithmic behavior • Spin fluctuations in dilute alloys give • (T) = 0[1 – (T/Tk)2]. Eq. (22) • e - e interaction: (T) = 0 – m’ T. Eq. (23)
D. Ni – rich Ni-Fe-Cr ternary alloys • Fig. 26: Deviations from fits to Eqs. (21) & (23). • Random & lower deviations for e – e interaction and systematic & much higher for Kondo-like behaviour. S. Chakraborty & A. K. Majumdar, J. Magn. Magn. Mater. 186, 357 (1998).
D. Ni – rich Ni-Fe-Cr ternary alloys Hall resistivity ρH = Ey / jx = R0Bz+ 0RSMS , In ferromagnetic metals and alloys where R0= Ordinary Hall constant, RS= Extra-ordinary or spontaneous Hall constant, B = magnetic induction, and MS = saturation magnetization. Rs~ 2, = Ohmic resistivity Minimum in Rs is expected. Ni-Fe-Cr:75-13-12, Tmin = 14 K Ni-Fe-Cr:70-12-18, Tmin = 22 K Fig. 27: Hvs. B for two of them.
D. Ni – rich Ni-Fe-Cr ternary alloys Fig. 28 : Rs also show minima since it scales as . Sample 3: 74-8-18, Tmin = 27 K. S. Chakraborty & A. K. Majumdar, Phys. Rev. B 57, 11850 (1998).
In 3-d alloys the interpretation of the magnetotransport data at low temperatures in terms of Quantum Interference Effects (QIE) is independent of the nature of disorder, viz, structural or compositional. CONCLUSION