1 / 54

Two Special Right Triangles

Two Special Right Triangles. 45°- 45°- 90° 30°- 60°- 90°. 1. 1. 1. 1. 45°- 45°- 90°. The 45-45-90 triangle is based on the square with sides of 1 unit. 1. 1. 1. 1. 45°- 45°- 90°. If we draw the diagonals we form two 45-45-90 triangles. 45°. 45°. 45°. 45°. 1. 1. 1. 1.

hoshi
Télécharger la présentation

Two Special Right Triangles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Two Special Right Triangles 45°- 45°- 90° 30°- 60°- 90°

  2. 1 1 1 1 45°- 45°- 90° The 45-45-90 triangle is based on the square with sides of 1 unit.

  3. 1 1 1 1 45°- 45°- 90° If we draw the diagonals we form two 45-45-90 triangles. 45° 45° 45° 45°

  4. 1 1 1 1 45°- 45°- 90° Using the Pythagorean Theorem we can find the length of the diagonal. 45° 45° 45° 45°

  5. 1 1 1 1 45°- 45°- 90° 12 + 12 = c2 1 + 1 = c2 2 = c2 2 = c 45° 45° 2 45° 45°

  6. 45° 2 1 45° 1 45°- 45°- 90° Conclusion: the ratio of the sides in a 45-45-90 triangle is 1-1-2

  7. 45° 4 45° 45°- 45°- 90° Practice 4 2 4 SAME leg*2

  8. 45° 9 45° 45°- 45°- 90° Practice 9 2 9 SAME leg*2

  9. 45° 2 45° 45°- 45°- 90° Practice 2 2 2 SAME leg*2

  10. 45° 7 45° 45°- 45°- 90° Practice 14 7 SAME leg*2

  11. 45°- 45°- 90° Practice Now Let's Go Backward

  12. 45° 45° 45°- 45°- 90° Practice 3 2 hypotenuse2

  13. 3 2 2 45°- 45°- 90° Practice = 3

  14. 45° 45° 45°- 45°- 90° Practice 3 2 3 3 SAME hypotenuse2

  15. 45° 45° 45°- 45°- 90° Practice 6 2 hypotenuse2

  16. 6 2 2 45°- 45°- 90° Practice = 6

  17. 45° 45° 45°- 45°- 90° Practice 6 2 6 6 SAME hypotenuse2

  18. 45° 45° 45°- 45°- 90° Practice 11 2 hypotenuse2

  19. 11 2 2 45°- 45°- 90° Practice = 11

  20. 45° 45° 45°- 45°- 90° Practice 112 11 11 SAME hypotenuse2

  21. 45° 45° 45°- 45°- 90° Practice 8 hypotenuse2

  22. 8 2 82 = * 2 2 2 45°- 45°- 90° Practice = 42

  23. 45° 45° 45°- 45°- 90° Practice 8 42 42 SAME hypotenuse2

  24. 45° 45° 45°- 45°- 90° Practice 4 hypotenuse2

  25. 4 2 42 = * 2 2 2 45°- 45°- 90° Practice = 22

  26. 45° 45° 45°- 45°- 90° Practice 4 22 22 SAME hypotenuse2

  27. 45° 45° 45°- 45°- 90° Practice 6 Hypotenuse 2

  28. 6 2 62 = * 2 2 2 45°- 45°- 90° Practice = 32

  29. 45° 45° 45°- 45°- 90° Practice 6 32 32 SAME hypotenuse2

  30. 2 2 60° 60° 2 30°- 60°- 90° The 30-60-90 triangle is based on an equilateral triangle with sides of 2 units.

  31. 2 2 60° 60° 2 30°- 60°- 90° The altitude (also the angle bisector and median) cuts the triangle into two congruent triangles. 30° 30° 1 1

  32. 30° 60° 30°- 60°- 90° This creates the 30-60-90 triangle with a hypotenuse a short leg and a long leg. Long Leg hypotenuse Short Leg

  33. 30° 60° 30°- 60°- 90° Practice We saw that the hypotenuse is twice the short leg. 2 We can use the Pythagorean Theorem to find the long leg. 1

  34. 30° 60° 30°- 60°- 90° Practice A2 + B2 = C2 A2 + 12 = 22 A2 + 1 = 4 A2 = 3 A = 3 2 3 1

  35. 30° 60° 30°- 60°- 90° Conclusion: the ratio of the sides in a 30-60-90 triangle is 1- 2 - 3 2 3 1

  36. 30° 60° 30°- 60°- 90° Practice The key is to find the length of the short side. 8 43 Hypotenuse = short leg * 2 4 Long Leg = short leg *3

  37. 30° 60° 30°- 60°- 90° Practice 10 Hypotenuse = short leg * 2 53 5 Long Leg = short leg *3

  38. 30° 60° 30°- 60°- 90° Practice 14 Hypotenuse = short leg * 2 73 7 Long Leg = short leg *3

  39. 30° 60° 30°- 60°- 90° Practice 23 Hypotenuse = short leg * 2 3 3 Long Leg = short leg *3

  40. 30° 60° 30°- 60°- 90° Practice 210 30 Hypotenuse = short leg * 2 10 Long Leg = short leg *3

  41. 30°- 60°- 90° Practice Now Let's Go Backward

  42. 30° 60° 30°- 60°- 90° Practice 22 Short Leg = Hypotenuse 2 113 11 Long Leg = short leg *3

  43. 30° 60° 30°- 60°- 90° Practice 4 Short Leg = Hypotenuse 2 23 2 Long Leg = short leg *3

  44. 30° 60° 30°- 60°- 90° Practice 18 Short Leg = Hypotenuse 2 93 9 Long Leg = short leg *3

  45. 30° 60° 30°- 60°- 90° Practice 30 Short Leg = Hypotenuse 2 153 15 Long Leg = short leg *3

  46. 30° 60° 30°- 60°- 90° Practice 46 Hypotenuse = Short Leg * 2 233 23 Short Leg = Long leg 3

  47. 30° 60° 30°- 60°- 90° Practice 28 Hypotenuse = Short Leg * 2 143 14 Short Leg = Long leg 3

  48. 30° 60° 30°- 60°- 90° Practice 32 Hypotenuse = Short Leg * 2 163 16 Short Leg = Long leg 3

  49. 30° 60° 30°- 60°- 90° Practice 63 Hypotenuse = Short Leg * 2 9 3 3 Short Leg = Long leg 3

  50. 30° 60° 30°- 60°- 90° Practice 83 Hypotenuse = Short Leg * 2 12 4 3 Short Leg = Long leg 3

More Related