1 / 43

The following problems refer to FeSO 4 . Is the compound ionic or molecular? How do you know?

The following problems refer to FeSO 4 . Is the compound ionic or molecular? How do you know? Calculate the oxidation state of the iron. Write the proper name of the compound. Calculate the oxidation state of the sulfur in the SO 4 2- ion.

idalia
Télécharger la présentation

The following problems refer to FeSO 4 . Is the compound ionic or molecular? How do you know?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The following problems refer to FeSO4. • Is the compound ionic or molecular? How do you know? • Calculate the oxidation state of the iron. • Write the proper name of the compound. • Calculate the oxidation state of the sulfur in the SO42- ion. • Write the reaction that would occur between FeSO4 and NaCl. • Calculate how many moles of NaCl are needed to react with 15.4 moles of FeSO4.

  2. Reaction Stoich. What coefficients mean: 2 Na + Cl2 2NaCl 2 Na 1 Cl2 2NaCl 4 Na 4Cl2

  3. Reaction Stoichiometry 2 Na + Cl2 2NaCl 6 moles Na 10 atoms Na ONLY WORKS FOR MOLES, MOLECULES, ATOMS

  4. 1. How many moles of H2 and O2 must react to form 6 moles of H2O? 2. How many moles of water must react with 0.25 moles of CaC2? CaC2 + 2H2O  C2H2 + Ca(OH)2

  5. 3. How many moles of KCl and O2 are formed from the decomposition of 6 moles of KClO3? 4. How many grams of oxygen are needed to react with 4.41 g of Li to form Li2O? (Ans: 5.08 g)

  6. 5. How many grams of oxygen are needed to react with 17.5 g of Al? (Ans: 15.6) Al + O2 Al2O3 6. How many grams of oxygen will react with 25.0 g of C2H6? (Ans: 93.3 g) C2H6 + O2 CO2 + H2O

  7. 7. How many grams of P4 and O2 are needed to make 3.62 g of P2O5? (Ans: 1.58 g, 2.04 g) P4 + O2 P2O5

  8. Calculate the mass of aluminum required to produce 750.0 g of iron. Also calculate the formula units of Fe2O3 that are used in the process. Al + Fe2O3 Al2O3 + Fe 363 g Al, 4.05 X 1024

  9. What mass of oxygen is needed to react with 16.7 g of iron to form Iron(III)oxide? How many molecules of O2 are used? 4Fe + 3O2 2Fe2O3 Ans: 7.18 g, 1.35 X 1023 atoms

  10. Lead(II)Nitrate reacts with potassium iodide to form potassium nitrate and lead(II)iodide. • Write the balanced reaction • What type of reaction is this? • Calculate the grams of potassium nitrate formed from the reaction of 18.0 g of lead(II)nitrate. • Calculate atoms of iodine in the lead(II) iodide

  11. Limiting Reactant • Sandwich analogy: 14 slices of bread 4 pieces of turkey (low fat) Maximum # of sandwiches? 2. Limiting Reactant – Totally consumed in a reaction. No leftovers

  12. How many grams of H2SO4 can be formed from the rxn of 5.00 moles of SO3 and 2.00 moles of H2O? SO3 + H2O  H2SO4 (Ans: 196 g)

  13. 2. How many grams of H2O can be formed from the rxn of 6.00 moles of H2 and 4.00 moles of O2? O2 + H2 H2O

  14. 3. How many grams of NaCl can be formed from the reaction of 0.300 mol of Na and 0.100 mol of Cl2? (Ans: 11.7 g) 2Na + Cl2 2NaCl

  15. 4. How many grams of Ag can be formed from the rxn of 2.00 g of Zn and 2.50 g of silver nitrate? How much excess reactant remains? Zn + AgNO3 Ag + Zn(NO3)2 (Ans: 1.59 g Ag, 1.52 g xs zinc)

  16. 5. How many grams of Ag2S can be formed from the rxn of 15.6 g of Ag and 2.97 g of H2S? (Assume O2 is in excess) 4Ag + 2H2S + O2 2Ag2S + 2H2O (Ans: 18.0 g)

  17. 6. How many grams of CO2 can be formed from the rxn of 40.0 g of CH3OH and 46.0 g of O2? 2CH3OH + 3O2 2CO2 + 4H2O (Ans: 42.2 g)

  18. How many grams of Ba3(PO4)2 can be formed from the rxn of 3.50 g of Na3PO4 and 6.40 g of Ba(NO3)2? (Ans: 4.92 g) Na3PO4 + Ba(NO3)2 Ba3(PO4)2 + NaNO3

  19. Percent Yield • Formula: Actual Yield X 100 = % Yield Theoretical Yield

  20. What is the % yield if you start with 10.00 grams of C and obtain 1.49 g of H2 gas? C + H2O  CO + H2 (Ans: 89.2%)

  21. Carbon was heated strongly in sulfur(S8) to form carbon disulfide. What is the percent yield if you start with 13.51 g of sulfur and collect 12.5 g of CS2? 4C + S8 4CS2 (Ans: 78.0%)

  22. An aluminum ladder oxidizes according the following unbalanced equation: Al + O2 Al2O3 • 100.0 grams of aluminum reacted with excess oxygen. Calculate the theoretical yield. (189 g) • If the percent yield was 67.4%, calculate the actual yield. (127 g) • Calculate how many grams of oxygen were used. (88.9 g) • Identify the type of reaction that occurred.

  23. 11.5 grams of sodium reacts with 15.0 grams of chlorine (Cl2) to form sodium chloride. 18.2 grams of NaCl are collected. • Write the balanced chemical equation. • Identify the limiting reactant. • Calculate the theoretical yield of NaCl. (24.7g) • Calculate the percent yield. (73.7%) • If the percent yield for a different trial (starting with same amounts) was only 60.4%, calculate the actual yield. • Identify the type of reaction that occurred.

  24. Molarity 1. Molarity = measure of the concentration of a solution 2. Molarity = moles/liter Similar to Density = g/L

  25. Molarity 3. Which is more concentrated? 1 M HCl 3 M HCl

  26. Molarity 1. What is the molarity of a soln that contains 49.05 g of H2SO4 in enough water to make 250.0 mL of soln? (Ans: 2.00 M) 2. What is the molarity of a soln made by dissolving 23.4 g of Na2SO4 in enough water to make 125 mL of soln? (Ans: 1.32 M)

  27. Molarity 3. What mass of HCl is present in 155 mL of 0.540 M HCl? (Ans: 3.06 g) 4. How many grams of NaOH are in 5.00 mL of 0.0900 M NaOH? (Ans: 0.018 g)

  28. Molarity 5. What volume of 0.0900 M NaOH is needed to provide 0.00058 moles? (Ans: 6.44 mL) 6. What volume of 0.0764 M HCl is needed to provide 0.0694 g of HCl?(Ans: 25 mL)

  29. Mixing From a Solid 1. Mixing from a solid 2. How would you prepare 350.0 mL of 0.500 M Na2SO4?

  30. Mixing From a Solid 3. Write directions for the preparation of 500.0 mL of 0.133 M KMnO4 (10.5g) 4. Write directions for the preparation of 250.0 mL of 0.00200 M NaOH (0.02 g)

  31. Diluting from a Solution 1. Dilution Formula: M1V1 = M2V2 2. Used when you are starting with a more concentrated soln. (Grape juice concentrate, Coke syrup)

  32. Diluting from a Solution 3. What is the molarity of a soln of KCl that is prepared by diluting 855 mL of 0.475 M soln to a volume of 1.25 L? (Ans: 0.325 M) 4. You have a 3.00 L bottle of 11.3 M HCl. What volume of it must be diluted to make 1.00 L of 0.555 M HCl? (Ans: 49.1 mL)

  33. The following questions refer to a 0.0987 M solution of NaNO3. • Calculate how many grams of NaNO3 are present in 50.0 mL of the solution. (0.419 g) • Calculate the volume of the solution required to provide 0.188 grams of NaNO3. (22.4 mL) • State how you would prepare 500.0 mL of the solution starting with solid NaNO3. (4.19 g) • State how you would prepare 500.0 mL of the solution starting with a large 3-L bottle of 2.00 M NaNO3(aq) (24.7 mL)

  34. 1) Mass 4.19 g of NaNO3 2) Place in a small volume of water to dissolve 3) Dilute to 500 mL • 1) Measure 24.7 mL of 0.0987 M NaNO3 2) Dilute to 500 mL

  35. The following questions refer to this equation: H2SO4 + NaOH  H2O + Na2SO4 • Calculate how many moles of NaOH are present in 25.0 mL of 0.100 M NaOH. • Calculate how many grams of Na2SO4 are produced if the 25.0 mL of 0.100 M NaOH reacts. • Calculate the moles of H2SO4 that would be required. • Calculate the volume of H2SO4 required if the concentration is 0.0800 M. • State what type of reaction occurred.

  36. The following questions refer to the following unbalanced reaction of ethanol (C2H5OH ) C2H5OH + O2 CO2 + H2O • State what type of reaction is occurring. • Calculate the grams of oxygen needed to react with 100.0 grams of ethanol. • Calculate the number of CO2 molecules produced. • The density of ethanol 0.789 g/cm3. Calculate the volume of ethanol needed to provide 100.0 grams.

  37. a) 10.0 mol b) 1.67 mol • a) 21.9 g b) 29.3 g c) 6.60 g • a) 83.6 g b) 5.74 mol c) 279 g d) 0.430 g e) 175 g • 363 g Fe, 4.05 X 1024 Fe2O3 15. 16.5 g Cu • 323 g Cl2 • a) 1.60 mol b) 1.50 mol c) 2.81 mol d) 1.90 mol • 39.4 g 30. 8.80 g CO2, 10.4 g HCl

  38. 47.0% • 13.8 g • 16.4 g 12-26. 22.5 g 12-27. 2.67 L 12-35. 1.27 M 12-37. 0.710 L 12-40. 2541 mL

  39. Sodium bicarbonate (NaHCO3) was decomposed to compare the actual mass of sodium carbonate (Na2CO3) to the theoretical mass. About two grams of NaHCO3 was placed in a petri dish. The dish was heated on a hotplate, allowed to cool, and then massed. The theoretical mass of Na2CO3 was calculated from the chemical equation and compared to the actual mass. This experiment was accurate, with a percent error of 5.3%. The experiment was not precise because it produced a range of 0.80 grams in the actual mass of Na2CO3.

  40. 4. Na2S(s)  2Na+(aq) + S2-(aq)

  41. Lab Notes • Goggles • Use aluminum pans instead of petri dishes • 4 trials total – Mark your dishes • Wash dishes out at end and leave all materials at station • BE CLEANER ABOUT THE BALANCE!!!!! • Ignore back of sheet, use AP lab report format • All work must be unique

More Related