1 / 53

PENGGUNAAN INTEGRAL

PENGGUNAAN INTEGRAL. 9. Menghitung luas suatu daerah y ang dibatasi oleh kurva dan sumbu-sumbu koordinat. Menghitung volume benda putar. Luas daerah di bawah kurva. Volume benda putar yang diputar mengelilingi sumbu Y. Integral Tentu Luas Daerah. Luas Daerah. Teorema Dasar Kalkulus.

iram
Télécharger la présentation

PENGGUNAAN INTEGRAL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PENGGUNAAN INTEGRAL 9 • Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. • Menghitung volume benda putar. Luas daerah di bawah kurva Volume benda putar yang diputar mengelilingi sumbu Y

  2. Integral TentuLuas Daerah Luas Daerah Teorema Dasar Kalkulus Misalkan f adalah fungsi yang kontinyu pada selang [a, b] dan misalkan F adalah anti turunan dari f pada selang tersebut, maka berlaku : Untuk meringkas penulisan, F(b) – F(a) dinotasikan sebagai Contoh 1 : Hitunglah nilai dari = = 2(2)3 – 2(2)2 – [2(-1)3 – 2(-1)2] = 16 – 8 + 2 + 2 = 12 Jawab Back Next Home

  3. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah Berubah Menjadi Integral y y Tentukan limitnya n   x x a 0 b a 0 x b Back Next Home Secara geometri definisi integral Riemaan di atas dapat diartikan sebagai luas daerah di bawah kurva y = f(x)pada interval[a, b]. Jumlah Luas Partisi

  4. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah xi y x 0 Back Next Home • Kegiatan pokok dalam menghitung luas daerah dengan integral tentu adalah: • Gambar daerahnya. • Partisi daerahnya • Aproksimasi luas sebuah partisi Li  f(xi) xi • Jumlahkan luas partisi • L  f(xi) xi • 5. Ambil limitnya L =lim f(xi) xi • 6. Nyatakan dalam integral Li xi a

  5. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah Contoh 1. Hitunglah luas daerah tertutup yang dibatasi kurva y = x2, sumbu x, dan garis x = 3 xi Jawab y Li x 0 3 Back Next Home • Langkah penyelesaian : • Gambarlah daerahnya • Partisi daerahnya • Aproksimasi luasnya Li xi2 xi • 4. Jumlahkan luasnya L xi2 xi • Ambil limit jumlah luasnya • L=lim xi2 xi • Nyatakan dalam integral dan hitung nilainya xi

  6. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah Contoh 2. Hitunglah luas daerah tertutup yang dibatasi kurva y = x2, sumbu Y, dan garis y = 4 Jawab 4 y x 0 Back Next Home • Langkah penyelesaian : • Gambarlah daerahnya • Partisi daerahnya • Aproksimasi luasnya L  xi.y • 4. Jumlahkan luasnya L y. y • Ambil limit jumlah luasnya • L=lim  y. y • Nyatakan dalam integral dan hitung nilainya xi

  7. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah y Contoh 3. Hitunglah luas daerah tertutup yang dibatasi kurva y = 4x - x2, sumbu x, dan garis x = 6 xi xj Jawab 4 6 x 0 Li Aj Back Next Home • Langkah penyelesaian: • Gambar dan Partisi daerahnya • Aproksimasi : Li (4xi - xi2)xi dan Aj  -(4xj - xj2)xj • 3. Jumlahkan : L  (4xi - xi2)xi dan A   -(4xj - xj2)xj • 4.Ambil limitnya L = lim (4xi - xi2)xidanA = lim  -(4xj - xj2)xj • 5. Nyatakan dalam integral xj xi

  8. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah y xi xj 4 6 x 0 xj xi Li Aj Back Next Home

  9. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah xi y y x 0 x 0 Back Next Home Kesimpulan : y xi

  10. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah y x Li x a b 0 x Back Next Home LUAS DAERAH ANTARA DUA KURVA Perhatikan kurva y = f(x) dan y = g(x) dengan f(x) > g(x) pada selang [a, b] di bawah ini. Dengan menggunakan cara : partisi, aproksimasi, jumlahkan, ambil limitnya, integralkan, maka dapat ditentukan luas daerah antara dua kurva tersebut. • Langkah penyelesaian: • Partisi daerahnya • Aproksimasi : Li [ f(x) – g(x) ] x • 4. Jumlahkan : L  [ f(x) – g(x) ] x • 5.Ambil limitnya : • L = lim [ f(x) – g(x) ] x • 6. Nyatakan dalam integral tertentu

  11. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah Contoh 4. Hitunglah luas daerah tertutup yang dibatasi kurva y = x2dan garis y = 2 - x Jawab y 5 x 4 3 Li 2 1 x x 0 -3 -2 -1 1 2 Back Next Home • Langkah penyelesaian: • Gambar daerahnya • Tentukan titik potong kedua kurva • x2 = 2 – x  x2 + x – 2 = 0  (x + 2)(x – 1) = 0 • diperoleh x = -2 dan x = 1 • Partisi daerahnya • Aproksimasi luasnya • Li (2 - x- x2)x • 5. Nyatakan dalam integral tertentu

  12. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah y 5 x 4 3 Li 2 1 x x 0 -3 -2 -1 1 2 Back Next Home

  13. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah y a Li b x x Ai x 0 Luas daerah = Back Next Home Untuk kasus tertentu pemartisian secara vertikal menyebabkan ada dua bentuk integral. Akibatnya diperlukan waktu lebih lama untuk menghitungnya.

  14. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah y d y x 0 c Li Luas daerah = Back Next Home Jika daerah tersebut dipartisi secara horisontal, maka akan diperoleh satu bentuk integral yang menyatakan luas daerah tersebut. Sehingga penyelesaiannya menjadi lebih sederhana dari sebelumnya.

  15. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah Contoh 5. Hitunglah luas daerah di kuadran I yang dibatasi kurva y2 = x, garis x + y = 6, dan sumbu x Jawab y 6 Li 2 x y y 0 6 Luas daerah = Back Next Home • Langkah penyelesaian: • Gambar daerahnya • Tentukan titik potong kedua kurva • y2 = 6 – y  y2 + y – 6 = 0  (y + 3)(y – 2) = 0 • diperoleh y = - 3 dan y = 2 • Partisi daerahnya • Aproksimasi luasnya • Li (6 - y- y2)y • 5. Nyatakan dalam integral tertentu

  16. Menghitung Luas dengan IntegralLuas Daerah Luas Daerah Luas daerah = Luas daerah = y 6 Luas daerah = Luas daerah = 2 x y Li y 0 Luas daerah = 6 Back Home Next

  17. Pendahuluan Volume Benda Putar Bola lampu di samping dapat dipandang sebagai benda putar jika kurva di atasnya diputar menurut garis horisontal. Pada pokok bahasan ini akan dipelajari juga penggunaan integral untuk menghitung volume benda putar.

  18. PendahuluanVolume Benda Putar Volume Benda Putar Gb. 4 Next Home Back Suatu daerah jika di putar mengelilingi garis tertentu sejauh 360º, maka akan terbentuk suatu benda putar. Kegiatan pokok dalam menghitung volume benda putar dengan integral adalah: partisi, aproksimasi, penjumlahan, pengambilan limit, dan menyatakan dalam integral tentu.

  19. Pendahuluan Volume Benda Putar Volume Benda Putar y y x y x 4 3 2 0 1 x 0 1 2 -2 -1 Back Next Home • Dalam menentukan volume benda putar yang harus diperhatikan adalah bagaimana bentuk sebuah partisi jika diputar. Berdasarkan bentuk partisi tersebut, maka metode yang digunakan untuk menentukan volume benda putar dibagi menjadi : • Metode cakram • Metode cincin • Metode kulit tabung

  20. Metode CakramVolume Benda Putar Volume Benda Putar Back Next Home Metode cakram yang digunakan dalam menentukan volume benda putar dapat dianalogikan seperti menentukan volume mentimun dengan memotong-motongnya sehingga tiap potongan berbentuk cakram.

  21. Metode CakramVolume Benda Putar Volume Benda Putar y x x a x x y x h=x 0 Back Next Home Bentuk cakram di samping dapat dianggap sebagai tabung dengan jari-jarir = f(x), tinggi h =x.Sehingga volumenya dapat diaproksimasi sebagai V  r2hatauV f(x)2x. Dengan cara jumlahkan, ambil limitnya, dan nyatakan dalam integral diperoleh: V    f(x)2 x V = lim   f(x)2 x

  22. Metode CakramVolume Benda Putar Volume Benda Putar Contoh 7. Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2 + 1, sumbu x, sumbu y, garis x = 2 diputar mengelilingi sumbu x sejauh 360º. x Jawab y y x x 1 h=x x x 2 Back Next Home • Langkah penyelesaian: • Gambarlah daerahnya • Buat sebuah partisi • Tentukan ukuran dan bentuk partisi • Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral.

  23. Metode CakramVolume Benda Putar Volume Benda Putar y x h=x x Back Next Home V  r2h V  (x2 + 1)2 x V   (x2 + 1)2 x V = lim  (x2 + 1)2 x

  24. Metode CakramVolume Benda Putar Volume Benda Putar Contoh 8. Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2, sumbu y, garis y = 2 diputar mengelilingi sumbu y sejauh 360º. y y Jawab 2 y x y y h=y x Back Next Home • Langkah penyelesaian: • Gambarlah daerahnya • Buatlah sebuah partisi • Tentukan ukuran dan bentuk partisi • Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral.

  25. Metode CakramVolume Benda Putar Volume Benda Putar y 2 y h=y x Back Next Home V  r2h V  (y)2 y V   y y V = lim  y y

  26. Metode CincinVolume Benda Putar Volume Benda Putar Back Next Home Metode cincin yang digunakan dalam menentukan volume benda putar dapat dianalogikan seperti menentukan volume bawang bombay dengan memotong-motongnya yang potongannya berbentuk cincin.

  27. Metode CincinVolume Benda Putar Volume Benda Putar Gb. 5 R r h Back Next Home Menghitung volume benda putar dengan menggunakan metode cincin dilakukan dengan memanfaatkan rumus volume cincin seperti gambar di samping, yaitu V= (R2 – r2)h

  28. Metode CincinVolume Benda Putar Volume Benda Putar Contoh 9. Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2 dan garis y = 2x diputar mengelilingi sumbu x sejauh 360º. y Jawab y =2x y 4 x x x 2x x2 2 x Back Next Home • Langkah penyelesaian: • Gambarlah daerahnya • Buat sebuah partisi • Tentukan ukuran dan bentuk partisi • Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral.

  29. Metode CincinVolume Benda Putar Volume Benda Putar y y =2x R=2x r=x2 4 x y x x 2 x Back Next Home V  (R2 – r2) h V   [ (2x)2 –(x2)2 ] x V   (4x2 – x4) x V    (4x2 – x4) x V = lim   (4x2 – x4) x

  30. Metode Kulit TabungVolume Benda Putar Volume Benda Putar Back Next Home Metode kulit tabung yang digunakan untuk menentukan volume benda putar dapat dianalogikan seperti menentukan volume roti pada gambar disamping.

  31. Metode Kulit TabungVolume Benda Putar Volume Benda Putar r r h h 2r Δr Back Next Home V = 2rhΔr

  32. Metode Kulit TabungVolume Benda Putar Volume Benda Putar Contoh 10. Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2 , garis x = 2, dan sumbu x diputar mengelilingi sumbu y sejauh 360º. Jawab y 4 3 x 2 x2 1 x x 0 1 2 Back Next Home • Langkah penyelesaian: • Gambarlah daerahnya • Buatlah sebuah partisi • Tentukan ukuran dan bentuk partisi. • Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral.

  33. Metode Kulit TabungVolume Benda Putar Volume Benda Putar x r = x y y x 0 2 1 2 1 4 4 3 3 x 2 2 x2 h = x2 1 1 x x 0 1 2 Back Next Home V  2rhx V  2(x)(x2)x V   2x3x V = lim  2x3x

  34. Metode Kulit TabungVolume Benda Putar Volume Benda Putar y y 4 4 3 3 R = 2 r=x 2 2 y 1 1 x x x 0 1 2 -2 -1 0 1 2 Back Home Next Jika daerah pada contoh ke-10 tersebut dipartisi secara horisontal dan sebuah partisi diputar mengelilingi sumbu y, maka partisi tersebut membentuk cincin. Volume benda putar tersebut dihitung dengan metode cincin adalah sebagai berikut. V  (R2 – r2)y V  (4 - x2)y V   (4 – y)y V = lim  (4 – y)y

  35. Latihan Penggunaan Integral Penggunaan Integral Next Home Back Latihan (6 soal) Petunjuk : Kesempatan menjawab hanya 1 kali

  36. LatihanPenggunaan Integral Penggunaan Integral Y 4 X 0 2 Home Next Back Soal 1. Luas daerah yang diarsir pada gambar di bawah ini dapat dinyatakan dalam bentuk integral sebagai .... A D B E C

  37. LatihanPenggunaan Integral Penggunaan Integral Y 4 X 0 2  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban D ) Next Home Back Soal 1. Luas daerah yang diarsir pada gambar di bawah ini dapat dinyatakan dalam bentuk integral sebagai .... A D B E C Jawaban Anda Benar

  38. LatihanPenggunaan Integral Penggunaan Integral Soal 1. Luas daerah yang diarsir pada gambar di bawah ini dapat dinyatakan dalam bentuk integral sebagai .... Y A D 4 4 - x2 B E x X 0 2 C x  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban D ) Next Home Back Jawaban Anda Salah

  39. LatihanPenggunaan Integral Penggunaan Integral Soal 2. Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. Y 4,5 satuan luas A 9 1/3 satuan luas D 6 satuan luas B 10 2/3 satuan luas E 7,5 satuan luas C X 0 Home Next Back

  40. LatihanPenggunaan Integral Penggunaan Integral Soal 2. Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. Y 4,5 satuan luas A 9 1/3 satuan luas D 6 satuan luas B 10 2/3 satuan luas E 7,5 satuan luas C X 0  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban E ) Next Home Back Jawaban Anda Benar

  41. LatihanPenggunaan Integral Penggunaan Integral Soal 2. Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. Y 4,5 satuan luas A 9 1/3 satuan luas D x 6 satuan luas B 10 2/3 satuan luas E 7,5 satuan luas C X -2 2 0 x  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban E ) Next Home Back Jawaban Anda Salah

  42. Latihan Penggunaan Integral Penggunaan Integral Soal 3. Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. Y 5 satuan luas A 9 1/3 satuan luas D 7 2/3 satuan luas B 10 1/3 satuan luas E 8 satuan luas C X 0 Home Next Back

  43. LatihanPenggunaan Integral Penggunaan Integral Y X 0  L  (8 – x2-2x) x ( Jawaban D ) 2 Next Home Back Soal 3. Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. 5 satuan luas A 9 1/3 satuan luas D 7 2/3 satuan luas B 10 1/3 satuan luas E 8 satuan luas C Jawaban Anda Benar

  44. Latihan Penggunaan Integral Penggunaan Integral Soal 3. Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. Y 5 satuan luas A 9 1/3 satuan luas D 7 2/3 satuan luas B 10 1/3 satuan luas E 8 satuan luas C X 0  L  (8 – x2-2x) x ( Jawaban D ) Next Home Back 2 Jawaban Anda Salah

  45. Latihan Penggunaan Integral Penggunaan Integral Soal 4. Luas daerah yang dibatasi oleh kurva x = y2 dan garis x + y = 2 adalah …. 2,5 satuan luas A 102/3 satuan luas D 4,5 satuan luas B 205/6 satuan luas E 6 satuan luas C Home Next Back

  46. LatihanPenggunaan Integral Penggunaan Integral Soal 4. Luas daerah yang dibatasi oleh kurva x = y2 dan garis x + y = 2 adalah …. Y 2,5 satuan luas A 102/3 satuan luas D 1 4,5 satuan luas B 205/6 satuan luas E X 0 -2 6 satuan luas C  L  [(2 – y) – y2 ] y ( Jawaban B ) Next Home Back Jawaban Anda Benar

  47. Latihan Penggunaan Integral Penggunaan Integral Soal 4. Luas daerah yang dibatasi oleh kurva x = y2 dan garis x + y = 2 adalah …. Y 2,5 satuan luas A 102/3 satuan luas D 1 4,5 satuan luas B 205/6 satuan luas E X 0 -2 6 satuan luas C  L  [(2 – y) – y2 ] y ( Jawaban B ) Next Home Back Jawaban Anda Salah

  48. Latihan Penggunaan Integral Penggunaan Integral Soal 5. Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 360. Jika digunakan metode kulit tabung, maka bentuk integral yang menyatakan volume benda putar tersebut adalah .... A D Y 2 B E 4 C X 0 Home Next Back

  49. LatihanPenggunaan Integral Penggunaan Integral Soal 5. Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 360. Jika digunakan metode kulit tabung, maka bentuk integral yang menyatakan volume benda putar tersebut adalah .... A D Y 2 B E 4 C X 0  V  2xx x ( Jawaban D ) Next Home Back Jawaban Anda Benar

  50. Latihan Penggunaan Integral Penggunaan Integral Soal 5. Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 360. Jika digunakan metode kulit tabung, maka bentuk integral yang menyatakan volume benda putar tersebut adalah .... A D Y 2 B E x 4 C X 0  V  2xx x ( Jawaban D ) Next Home Back Jawaban Anda Salah

More Related