1 / 28

Layers of rock are deposited horizontally, like the layers of the Grand Canyon shown here.

Layers of rock are deposited horizontally, like the layers of the Grand Canyon shown here. How do geologists determine the relative and absolute ages of rock layers? Fossils are the preserved remains or traces of once living things.

jena
Télécharger la présentation

Layers of rock are deposited horizontally, like the layers of the Grand Canyon shown here.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Layers of rock are deposited horizontally, like the layers of the Grand Canyon shown here.

  2. How do geologists determine the relative and absolute ages of rock layers? Fossils are the preserved remains or traces of once living things Geologists use the law of superposition to determine the relative ages of sedimentary rocks from the sequence of rock layers and the fossils within each layer. A rock’s absolute age is the time that has passed since the rock formed. Determining the Age of Rocks

  3. Geologists use radioactive dating to determine the absolute ages of rocks. Determining the Age of Rocks

  4. Determining the Age of Rocks Geologists determine the relative age of a fossil as well as that of the rock containing it. The relative age of a rock is its age compared to the ages of other rocks above or below it in a sequence of rock layers.

  5. Determining the Age of Rocks The walls of the Grand Canyon consist of many different layers of rock. Kaibab-Toroweap limestone Coconino sandstone Younger Hermit shale Supai sandstone Colorado River Redwall limestone Muav limestone Bright Angel shale Older Tapeats sandstone Vishnu schist

  6. Determining the Age of Rocks The Law of Superposition • Sedimentary rocks form as horizontal layers. • The law of superposition states that if rock layers are undisturbed, younger rocks lie above older rocks, and the oldest rocks are at the bottom. • Geologists have examined sedimentary rocks from locations around the world to develop a relative time scale for many rock layers.

  7. Determining the Age of Rocks Index Fossils and Relative Dating Geologists can also determine the relative ages of sedimentary rocks by examining the fossils that are found in them. Most types of organisms preserved as fossils are now extinct. An extinct type of organism is one that no longer exists.

  8. Determining the Age of Rocks Fossils of organisms that are easily identified, occurred over a large area, and lived during a well-defined period of time are called index fossils. • Geologistsuseindex fossils to determine the relative ages of rocks. • If a rock contains examples of an index fossil, then the rock must have formed during the time that that organism lived.

  9. Determining the Age of Rocks Radioactive Dating When a rock forms, it has a known ratio of radioactive and stable isotopes. Because a radioisotope decays into a stable isotope at a steady rate as the rock ages, scientists can measure this ratio to find the rock’s absolute age.

  10. What forms the basis for the geologic time scale? The geologic time scale is based on the relative ages of rock layers and the use of radioactive dating to find the absolute ages of rocks. A Brief History of Earth

  11. What are the major divisions of Earth’s history? The major divisions of Earth’s history are Precambrian time and the Paleozoic, Mesozoic, and Cenozoic Eras. A Brief History of Earth

  12. A Brief History of Earth Geologists have used information about the relative and absolute ages of rocks to develop a timeline for the history of Earth. Earth’s history is divided into several large units, called eras. Each era is one major stage in Earth’s history.

  13. A Brief History of Earth An era is divided into smaller units called periods. Eras and periods help scientists locate changes and events in Earth’s history. At some boundaries between eras, many different organisms became extinct within a relatively short time–an event called a mass extinction. Theories to explain mass extinctions include asteroid impacts, volcanic activity, disease, and climate change.

  14. A Brief History of Earth The geologic time scale shows the major intervals in Earth’s history.

  15. A Brief History of Earth Precambrian Time: 4.6 Billion – 542 Million Years ago • The earliest portion of Earth’s history, known as Precambrian time, includes the formation of Earth and the early development of life. • By 4 billion years ago, the forces that cause plate movement were already at work. • Soon after, one-celled organisms appeared in the oceans. • Later in the Precambrian, simple soft-bodied animals developed.

  16. A Brief History of Earth Paleozoic Era: 542-251 Million Years Ago • Early in the Cambrian period, a variety of animals developed in the oceans. • More than 450 million years ago, fishes evolved in the oceans. • Plants and animals, including early reptiles, began to live on land. • Dense forests of mosses and cone-bearing plants covered much of the land.

  17. A Brief History of Earth • At times during the Paleozoic, parts of many continents were flooded by seas. • Thick layers of sediment deposited in these seas formed much of the sedimentary rock found on the continents today. • During the last period of the Paleozoic Era, the Permian period, the supercontinent Pangaea formed.

  18. A Brief History of Earth During the early Paleozoic Era, life began to evolve into many different forms. This scene shows how life might have looked on the sea floor during the Cambrian Period.

  19. A Brief History of Earth Mesozoic Era: 251-65 Million Years Ago • The Mesozoic Era was the time of the dinosaurs. • The first dinosaurs appeared about 225 million years ago. • About this same time, Pangaea began to break up. • The first mammals also appeared in the Mesozoic.

  20. A Brief History of Earth Another major development was the appearance of flowering plants. All the dinosaurs and many other types of organisms were killed at the end of the Mesozoic Era in a mass extinction. The leading hypothesis for the cause of the mass extinction is the impact of one or more large asteroids.

  21. A Brief History of Earth This spiral diagram provides an overview of Earth’s history.

  22. A Brief History of Earth Cenozoic Era: 65 Million Years Ago to the Present • Since the end of the Mesozoic Era, Earth has been in the Cenozoic Era. • During this time, Earth’s climate has generally become cooler and drier. • Several ice ages have come and gone in the last 5 million years.

  23. A Brief History of Earth • Mammals became very diverse and widespread during the Cenozoic Era. • About 150,000 years ago, modern humans first appeared in Africa. Since then, humans have migrated to every continent.

  24. A Brief History of Earth • During the Mesozoic Era, dinosaurs roamed Earth’s surface. • During the Cenozoic Era, the diversity and size of mammals increased greatly.

  25. Assessment Questions • Which process do geologists use to determine the absolute age of rocks? • analyzing index fossils • determining superposition • relative dating • radioactive dating

  26. Assessment Questions • Which process do geologists use to determine the absolute age of rocks? • analyzing index fossils • determining superposition • relative dating • radioactive datingANS: D

  27. Assessment Questions • During which era of Earth’s history did dinosaurs live? • Precambrian era • Paleozoic era • Mesozoic era • Cenozoic era

  28. Assessment Questions • During which era of Earth’s history did dinosaurs live? • Precambrian era • Paleozoic era • Mesozoic era • Cenozoic eraANS: C

More Related