170 likes | 319 Vues
E N D
1. ADVANCEMENT IN PROTEIN INFERENCE FROM SHOTGUNPROTEOMICS USING PEPTIDE DETECTABILITY PEDRO ALVES
Advisor: Predrag Radivojac
2. Overview
Shotgun Proteomics
Protein Inference Problem
Protein Identification Using Peptide Detectability
Results
Limitations and Improvements
6. Protein Inference Problem
8. Resolving Ambiguity
9. Factors affecting Peptide Detection
12. RESULTS
13. GMPSA vs LDFAin a R. norvegicus sample
14. GMPSA vs LDFA
15. Limitations and Improvements Include missed-cleavage peptides
Include lower scoring peptides to aid in the differentiation of tied proteins
Include peptides identified with charges +1 and +3
Train on other analytical platforms
Study the effects of detectability prediction on algorithm results
16. Publications PSB 2007
Alves, P. , Arnold, R. , Novotny, M. , Radivojac, P. , Reilly, J. , Tang, H. (2007). Advancement in Protein Inference from Shotgun Proteomics Using Peptide Detectability. Pac. Symp. Biocomput., (2007) 12: 409-420
ISMB 2006
Tang, H., Arnold, R. J., Alves, P., Xun, Z., Clemmer, D. E., Novotny, M. V., Reilly, J. P. & Radivojac, P. (2006). A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinformatics, (2006) 22 (14): e481-e488.
17. Acknowledgements Predrag Radivojac
Haixu Tang
Randy Arnold
IU School of Informatics
IU Chemistry Dept.