1 / 28

Podstawy Projektowania Inżynierskiego Łożyska ślizgowe

P o l i t e c h n i k a O p o l s k a Wydział Zarządzania i Inżynierii Produkcji Instytut Inżynierii Produkcji. Podstawy Projektowania Inżynierskiego Łożyska ślizgowe. Prowadzący: dr inż. Piotr Chwastyk e-mail: p.chwastyk@po.opole.pl www.chwastyk.po.opole.pl. Definicja łożysk.

juana
Télécharger la présentation

Podstawy Projektowania Inżynierskiego Łożyska ślizgowe

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. P o l i t e c h n i k a O p o l s k a Wydział Zarządzania i Inżynierii Produkcji Instytut Inżynierii Produkcji Podstawy Projektowania InżynierskiegoŁożyska ślizgowe Prowadzący: dr inż. Piotr Chwastyk e-mail: p.chwastyk@po.opole.pl www.chwastyk.po.opole.pl

  2. Definicja łożysk Aby zapewnić prawidłową pracę elementu, jakim jest wał, należy zachować stałe położenie osi jego obrotu względem nieruchomej podstawy. Zadanie to spełniają łożyska, a ustalenie położenia osi i wałów względem korpusów nazywa się łożyskowaniem. Łożysko - część urządzenia technicznego np. maszyny lub mechanizmu, podtrzymująca (łożyskująca) inną jego część (łożyskowaną) w sposób umożliwiający jej względny ruch obrotowy (np. wał, oś). Cechy materiału łożyskowego: dobra odkształcalność, odporność na zatarcie, mały współczynnik tarcia suchego, odporność na zużycie, odporność na korozję, wytrzymałość na nacisk w temperaturze pracy, wytrzymałość zmęczeniowa, dobra przewodność cieplna, stabilność geometryczna, dobra obrabialność.

  3. Łożyska ślizgowe i ich rodzaje • Łożysko ślizgowe – powierzchnia czopa wału ślizga się po powierzchni panewki lub bezpośrednio po powierzchni otworu łożyska. Jest to łożysko nie posiadające ruchomych elementów pośredniczących. Czop wału lub inny obrotowy element jest umieszczony w cylindrycznej panewce z pasowaniem luźnym. • Łożyska ślizgowe dzielą się na: • suche - okresowo smarowane smarem stałym lub niesmarowane w ogóle. Panewki takich łożysk wykonane są ze stopów łożyskowych lub z tworzyw sztucznych, takich jak teflon. Używane są do połączeń słabo obciążonych i mniej odpowiedzialnych. • powietrzne - w których dystans między wałem a panewką utrzymywany jest przez poduszkę powietrzną wytworzoną przez sprężone powietrze dostarczane do panewki. Łożyska tego typu stosuje się w urządzeniach precyzyjnych, w których na wałach występują niewielkie siły promieniowe. • olejowe - część korpusu łożyska wypełniona jest olejem. W czasie ruchu wału, pomiędzy powierzchnią wału a panewką tworzy się cienka warstwa oleju (film olejowy), która jest wystarczająca do podtrzymania wału. • hydrodynamiczne - w których film olejowy tworzy się samoczynnie wskutek zjawisk hydrodynamicznych powstających w szczelinie • hydrostatyczne - w tego typu łożyskach dodatkowo do panewki dostarczany jest olej pod ciśnieniem.

  4. Łożyska ślizgowe – zalety i wady • Zalety łożysk ślizgowych: • małe wymiary poprzeczne; • duża żywotność (przy zapewnieniu tarcia płynnego); • cichobieżność i tłumienie drgań; • wygodny montaż (szczególnie łożysk dzielonych); • mały koszt. • Wady łożysk ślizgowych: • duży opór tarcia przy rozruchu; • duża wrażliwość na warunki smarowania; • duże wymiary wzdłużne; • kłopotliwa naprawa.

  5. Klasyfikacja łożysk ślizgowych Zależnie od kierunku obciążeń rozróżniamy: •  łożyska ślizgowe poprzeczne (rys. a); • łożyska ślizgowe wzdłużne (rys. b); • łożyska ślizgowe poprzeczno-wzdłużne.

  6. Tarcie w łożysku ślizgowym • Tarcie ślizgowe pomiędzy panewką łożyska a czopem wału zależy od: • materiałów współpracujących; • chropowatości powierzchni współpracujących; • rodzaju smarowania; • sił nacisku. • Rodzaje tarcia: • suche – współpracujące powierzchnie nie są smarowane; • płynne – gdy między powierzchniami czopa i panewki stale występuje warstewka smaru; • mieszane – przy którym powierzchnie współpracujące częściowo stykają się (głównie wierzchołkami nierówności), zaś na pozostałym obszarze są rozdzielone warstewką smaru.

  7. W łożyskach ślizgowych zawsze dąży się do uzyskania tarcia płynnego, w przeciwnym razie ulegają one szybkiemu zużyciu i muszą być zastąpione łożyskami tocznymi. W praktyce uzyskuje się najczęściej tarcie mieszane. Uzyskanie tarcia płynnego jest możliwe, gdy ciśnienie smaru w szczelinie jest większe niż naciski jednostkowe czopa na panewkę. W celu zmniejszenia oporów ruchu pomiędzy panewką i czopem należy wytworzyć warstewkę nośną smaru lub gazu. Tarcie w łożysku ślizgowym

  8. Podstawowe zadania smaru: zmniejszenie oporów tarcia; zmniejszenie zużycia łożysk; zabezpieczenie przed zatarciem i ścieraniem; chłodzenie. Smary i smarowanie Podstawowe cechy smaru: • lepkość; • smarowność; • temperatura krzepnięcia i zapłonu; • temperatura kroplenia; • odporność na starzenie się.

  9. Rodzaje smarów: stałe – grafit, dwusiarczek molibdenu, talk (stosowany w postaci proszku). plastyczne – stosowany do łożysk wolnobieżnych lub pracujących okresowo, gdy zachodzi obawa zatarcia. Zasadnicza cecha tych smarów to temperatura kroplenia. ciekłe – dzielimy na: oleje mineralne – (z ropy naftowej) zależnie od lepkości: wrzecionowe, maszynowe, cylindryczne; oleje silnikowe (syntetyczne) – duża temperatura zapłonu, niska temperatura krzepnięcia, duży wskaźnik lepkości. Rodzaje smarów

  10. Ze względu na pochodzenie rozróżniamy smary: roślinne, zwierzęce, mineralne. Wymogi stawiane smarom: odporność na utlenianie; nie wydzielanie osadu; wykazywanie dużego ciepła właściwego; wykazywanie dużego przewodnictwa cieplnego. Rodzaje smarów

  11. Do łożysk ślizgowych najczęściej stosuje się smary ciekłe, a zwłaszcza oleje mineralne. Oleje o dużej lepkości umożliwiają powstanie większego ciśnienia w warstwie smaru, nadają się zatem do łożysk o większych obciążeniach. Własności olejów można polepszyć przez stosowanie dodatków, np. przeciwkorozyjnych, polepszających smarność, przeciwdziałających starzeniu się oleju itp. W łożyskach o dużych prędkościach kątowych wału i niewielkich obciążeniach stosuje się panewki wykonywane z materiałów źle odprowadzających ciepło, np. z tworzyw sztucznych. Jako czynnik smarujący stosuje się wówczas wodę, co równocześnie ułatwia chłodzenia łożyska. Smary i smarowanie

  12. Urządzenia smarownicze Do smarów stałych stosuje się smarownice kapturoweStauffera (a) i dociskowe sprężynowe (b). Przy smarowaniu przelotowym wykorzystuje się smarownice knotowe (c) lub igłowe (d). Smarowanie obiegowe uzyskuje się przez zastosowanie pierścieni smarujących luźnych lub stałych, albo dzięki zastosowaniu ciśnienia (smarowanie obiegowe ciśnieniowe). Rolę pierścieni smarujących mogą spełniać wieńce. Smarowanie pod ciśnieniemstanowi najdoskonalszy rodzaj smarowania, zapewniający jednocześnie obfity dopływ oleju oraz chłodzenie łożyska i filtrowanie.

  13. Czop stanowiący część wału lub osi wykonany jest zwykle ze stali, natomiast element łożyska bezpośrednio stykający się z czopem wykonuje się z tzw. materiałów łożyskowych. Materiały te powinny spełniać następujące warunki: odporność na ścieranie i zatarcie (nieniszczenie wału); mały współczynnik tarcia i dobre powiązanie z panewką; łatwe docieranie się; duża wytrzymałość pozwalająca na stosowanie dużych nacisków powierzchniowych; duża odporność chemiczna na oddziaływanie ośrodka, oraz podwyższonej temperatury; duża podatność i duże odkształcenia plastyczne (zabezpieczające przed spiętrzeniem nacisków); dobre przewodnictwo cieplne; mały współczynnik rozszerzalności cieplnej; dobre własności odlewnicze; dobra obrabialność; niska cena i łatwość nabycia. Materiały łożyskowe

  14. Do najczęściej stosowanych materiałów stosowanych na panewki łożysk zalicza się stopy cynowe, zwane babbitami oskładzie 89% Sn (cyna), 8% Sb (antymon) i 3% Cu (miedź) lub zbliżonym. Stopy te odznaczają się bardzo dobrymi własnościami ślizgowymi, dobrą odkształcalnością, odpornością na zatarcie i odpornością na korozję. Podobne własności mają stopy ołowiowe, które są nieco miększe ale tańsze. Do innych materiałów stosowanych na łożyska należą: brązy odlewnicze – cynowe i ołowiowe - duża twardość i wytrzymałość zmęczeniowa, stosowane gdy własności wytrzymałościowe są ważniejsze od ślizgowych; mosiądz – ma niższą wytrzymałość ale lepszą odporność na pracę w podwyższonej temperaturze; stopy aluminium –z miedzią niklem i krzemem. Ich wadą jest duża rozszerzalność cieplna; żeliwa – stosowane rzadziej ze względu na dużą twardość i małą odkształcalność. Materiały łożyskowe

  15. Materiały łożyskowe Jeżeli smarowanie łożysk jest bardzo utrudnione lub ze względu na warunki pracy należy go uniknąć, stosuje się panewki z materiałów porowatych. Najczęściej są to tuleje prasowane, spiekane i nasycane olejem. Po rozgrzaniu łożyska smar wypływa na powierzchnię panewki, a po obniżeniu temperatury cofa się w głąb porów (łożyska samosmarowne). Poza stopami metali, stosuje się również inne materiały takie jak twarde drewno, tworzywa sztuczne, grafit, szkło (mechanizmy precyzyjne).

  16. Tarcie w łożysku ślizgowym Tarcie poślizgu – nazywamy opór jaki powstaje, gdy przesuwamy jedno ciało po drugim. gdzie: – współczynnik tarcia; N– siła nacisku. • Tarcie ślizgowe pomiędzy panewką łożyska a czopem wału zależy od: • materiałów współpracujących; • chropowatości powierzchni współpracujących; • rodzaju smarowania; • sił nacisku.

  17. Tarcie w łożysku ślizgowym Rodzaje tarcia: Suche – ( = 0,3  0,8) – nie ma smaru na czopie. Półsuche– ( = 0,1  0,3) – powstaje na skutek tego, że pod wpływem powietrza czop pokrywa się tlenkiem (korozja); ewentualnie dostają się tam oleje, kurz, woda i inne zanieczyszczenia; Graniczne– ( = 0,1  0,3) – to tarcie na powierzchniach ślizgowych na mikroskopijnej warstewce smaru, absorbowanego przez pory metalu; Płynne – ( = 0,001  0,005) – tarcie to powstaje wtedy gdy powierzchnie ślizgowe przedzielone są warstewką smaru – film olejowy. Półpłynne– ( = 0,005  0,1) – to przypadek gdy grubość filmu olejowego jest za cienka aby rozdzielić współpracujące elementy (najwyższe nierówności zaczepiają o siebie). Dążymy do uzyskania tarcia płynnego. W praktyce uzyskujemy tarcie mieszane. Uzyskanie tarcia płynnego jest możliwe, gdy ciśnienie smaru w szczelinie jest większe niż naciski jednostkowe czopa na panewkę. W celu zmniejszenia oporów ruchu pomiędzy panewką i czopem powinniśmy wytworzyć warstewkę nośną smaru lub gazu.

  18. Smarowanie łożysk W zależności od podawania smaru rozróżniamy łożyska: hydrostatyczne – smar (gaz) podajemy pod ciśnieniem. hydrodynamiczne– warstwa nośna smaru (gazu) powstaje na skutek ruchu obrotowego czopa względem panewki i wzajemnego poślizgu między ich powierzchniami poślizgowymi. Częściej jest stosowana metoda hydrodynamiczna – pod wpływem ruchu obrotowego czopa względem panewki powstaje tzw. klin smarowy. Aby uzyskać klin smarowy musi być zapewniona odpowiednia prędkość obrotowa, odpowiednia ilość smaru, niewielka chropowatość czopa i panewki, niewielki luz łożyskowy. Niespełnienie któregoś z warunków – tarcie półpłynne.

  19. Podstawową częścią łożysk ślizgowych jest korpus, w którym czop jest osadzony bezpośrednio lub pośrednio. Elementem pośrednim jest najczęściej osadzona tuleja, której powierzchnia wewnętrzna stanowi panewka łożyska. Korpusy łożysk ślizgowych poprzecznych są wykonywane jako oddzielne elementy maszyn i urządzeń, główne ich rodzaje objęte są normami. Budowa łożysk ślizgowych Korpus oczkowy kołnierzowy lekki Korpus dzielony ciężki

  20. Korpusy dzieloneumożliwiają zastosowanie panewek dwukołnierzowych, co pozwala na ustalenie osiowe łożyskowanego wału. Wykonujemy je z żeliwa lub staliwa. Korpusy oczkowe – stosowane są w mniejszych łożyskach. Umożliwiają zachowanie prostej konstrukcji korpusu maszyny. Wadą ich jest trudny montaż i demontaż. Tuleje łożyskowe – stanowią wymienne części łożysk (w większości znormalizowane). Dzielimy je na jednolite i dwudzielne. Tuleje łożyskowe powinny być zabezpieczone przed obrotem i przesunięciem wzdłuż osi (np. kołkiem). W praktyce korzysta się z tulei łożyskowych znormalizowanych.   Budowa łożysk ślizgowych

  21. Budowa łożysk ślizgowych Korpusem łożyska może być fragment korpusu maszyny – panewka łożyska wykonana jest jako osobna tuleja. Panewki dzielimy na stałe (a) i wahliwe (b). Panwie wahliwe (samonastawne) stosowane są przy dużym ugięciu wału.

  22. Uzyskanie właściwych luzów łożyskowych oraz płynnego tarcia jest bardzo trudne. Przy ustalaniu luzów należy uwzględnić: chropowatość powierzchni; różnicę w rozszerzalności cieplnej czopa i łożyska; maksymalną temperaturę pracy łożyska; konieczność uzyskania stabilnej pracy wału w różnych temperaturach; własności smaru. Dokładność wykonania łożysk. Luzy łożyskowe W praktyce wartości luzów łożyskowych, tolerancji, pasowań oraz chropowatości powierzchni ustalane są na drodze doświadczeń. Maksymalne wysokości nierówności na powierzchniach czopa i panewki należy przyjmować w granicach 1  6 m rzadziej 16 m. Do wstępnych obliczeń (gdy nie jest niezbędne uzyskanie tarcia płynnego) można przyjmować następujące pasowania: H7/g6, H7/f7, H7/e8, H7/d8. W ten sposób niezależnie od średnicy czopa określa się jednoznacznie luz łożyskowy.

  23. Obliczanie łożysk ślizgowych Obliczanie łożysk ślizgowych polega na ustaleniu ich wymiarów z warunków wytrzymałościowych oraz sprawdzeniu, czy łożyska nie będą ulegały nadmiernemu rozgrzewaniu w czasie pracy. Obliczenia głównych wymiarów, tj. średnicy d i długości czynnej łożyska l prowadzone są w sposób przybliżony, gdyż nie wszystkie czynniki decydujące o warunkach pracy łożyska mogą być uwzględnione w ścisły sposób.

  24. Obliczanie łożysk ślizgowych Czop łożyska jest narażony na zginanie, przy czym obciążenie ciągłe czopa jest zastąpione siłą skupioną F przyłożoną w połowie długości czopa. Naprężenia zginające w niebezpiecznym przekroju można obliczyć wg wzoru: Zakładając równomierne naciski między powierzchnią panewki i czopa określa się wytrzymałość panewki z warunku na naciski jednostkowe:

  25. Obliczanie łożysk ślizgowych Zakładając, że wartości rzeczywistych naprężeń zginających oraz nacisków będą bliskie wartościom dopuszczalnym, można wcześniejsze nierówności zastąpić równaniami dzieląc je stronami. Otrzymuje się wówczas zależność: Oznaczając przez  = l/d, wówczas:

  26. Obliczanie łożysk ślizgowych Średnicę czopa określa wzór: Czynna długość czopa: Obliczone wymiary zaokrągla się do wymiarów normalnych, uwzględniając znaki nierówności. Jeżeli średnica czopa otrzymana z obliczeń wału różni się od obliczonej z powyższego wzoru, należy przyjąć wartość większą z tych wartości.

  27. Obliczanie łożysk ślizgowych Sprawdzenie łożyska na rozgrzewanie wykonuje się przez sprawdzenie wartości iloczynu pśr·v. Iloczyn ten jest określany jako umowna miara ciepła wytwarzanego przez tarcie. Zakładając ograniczenie temperatury pracy łożyska do około 60ºC, można określić dopuszczalne wartości iloczynu (pśr·v)dop i sformułować warunek: pśr·v  (pśr·v)dop W przypadku niespełnienia tego warunku, należy zwiększyć wymiary czopa lub polepszyć chłodzenie łożyska.

  28. Obliczanie łożysk ślizgowych Obliczanie łożysk ślizgowych wzdłużnych polega na obliczeniu średnic czopa z warunku na naciski oraz sprawdzeniu na rozgrzewanie. Warunek na naciski przyjmuje postać: Przy sprawdzaniu łożyska na rozgrzewanie wartość prędkości obwodowej oblicza się na średnicy powierzchni pracującej: dw dz

More Related