1 / 20

Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135 , 17494-17500.

MALLORY REACTION. Visible Light-Promoted Metal-Free C-H Activation: Diarylketone-Catalyzed Selective Benzylic Mono- and Difluorination. Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135 , 17494-17500. Augusto César Hernandez-Perez Literature Meeting February 19 th , 2014.

kenaz
Télécharger la présentation

Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135 , 17494-17500.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MALLORY REACTION. Visible Light-Promoted Metal-Free C-H Activation: Diarylketone-Catalyzed Selective Benzylic Mono- and Difluorination Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135, 17494-17500. Augusto César Hernandez-Perez Literature Meeting February 19th, 2014

  2. Outline CARBON RICH MATERIALS AND THE MALLORY REACTION. • Pr. Chuo Chen • Why fluorine? • Mono-fluorination • Reaction proposal • Difluorination • Mechanistic studies • Conclusion

  3. Pr. Cho Chen CARBON RICH MATERIALS AND THE MALLORY REACTION. Birth: Taipei, Taiwan B.S. degree: National Taiwan University (1995) Ph.D.: Harvard University under the direction of Prof. Matthew D. Shair (2001) Post-doc: Harvard University under the guidance of Prof. Stuart L. Schreiber (2001-2004) Joined the Biochemistry Department at the University of Texas Southwestern Medical Center (2004) Promoted Associated Professor (2010) Award: Southwestern Medical foundation Scholar in Biomedical Research (2004) http://pubs.rsc.org/en/content/articlehtml/2011/cc/c0cc90144j http://www4.utsouthwestern.edu/chuochen/group.htm

  4. Research Program 1. Chemical Biology: Synthesis of small-molecule inhibitors of the Hedgehog (Hh) and Wnt signal transduction pathways Mechanistic and medicinal chemical studies of a series of novel Hh and Wnt antagonists 2. Natural product synthesis: Ageliferin Nakiterpiosin Nakiterpiosinone 3. Synthetic methodology development: Palladium-Catalyzed Direct Fonctionalization of Imidazolinone Regiocontrol in MnIII-Mediated Oxidative Heterobicyclizations A Highly Selective Vanadium Catalyst for Benzylic C–H Oxidation A Simple Method for the Electrophilic Cyanation of Secondary Amines http://www4.utsouthwestern.edu/chuochen/group.htm

  5. Why Fluorine? – Properties • Special properties: • High electronegativity • Relatively small size • C-F bond: • Strongest bond with carbon • Lenght similar C-O bond • Trifluoromethyl (CF3) volume similiar to ethyl (CH3CH2) Bondi, A. J. Phys. Chem.1964, 68, 441-451. Jeschke, P. ChemBioChem2004, 5, 570-589. Smart, B. E. J. Fluorine Chem. 2001, 109, 3-11. Banks, R. E. J. Fluorine Chem.1998, 87, 1-17. Müller, K.; Faeh, C.; Diederich, F. Science2007, 317, 1881-1886.

  6. Why Fluorine? – Utility in Different Fields • Useful in medical chemistry: • Increase metabolic stability: oxidation by liver enzymes (P450 cytochromes) : block reactive site by the introduction of a fluorine atom • Reduces basicity when close to a basic group (better membrane permeability) • Fluorine in nuclear medicine: • PET : Positron emission tomography • Nuclear medical imaging in vivo • 18F tracer has longer half life • Crop protection: • 28% of the halogenated products between 1940-2003 contained fluorine • Environmental friendly compare to others halogens • Material industry • Fluorinated polymers exhibit interesting properties (high thermal stability, chemical inertness) Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem2004, 5, 637−643. Phelps, M. E. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 9226-9233. Jeschke, P. ChemBioChem2004, 5, 570-589. Okazoe, T. Proc. Jpn. Acad., Ser. B2009, 85, 276-289.

  7. Fluorine Incorporation • Nucleophilic fluorination: • Small size of the atom and low polarisability encourages F- to act more like a base rather than a nucleophile • Various nucleophilic reagents (F-, S-F reagents) • Electrophilic fluorination: • Not easily achieved because fluorine is the most electronegative element • Use of N-F reagents (even 5% F2 in N2) • Radical fluorination: • Use of N-F reagents Kirk, K. L. Org. Process Res. Dev.2008, 12, 305-321.

  8. Mono-Fluorination – Literature Precedent • Functional group transformation: • Nucleophilic fluorination Yadav, A. K.; Srivastava, V. P.; Yadav, L. D. S. Chem. Commun. 2013, 49, 2154-2156. York, C.; Prakash, G. K. S.; Olah, G. A. Tetrahedron1996, 52, 9-14. • Electrophilic / Radical fluorination Cazorla, C.; Métay, E.; Andrioletti, B.; Lemaire, M. Tetrahedron Lett.2009, 50, 3936-3938. Rueda-Becerril, M.; Sazepin, Chatalova Sezapin, C.; Leung, J. C. T.l Okbinoglu, T.; Kennepohl, P.; Paquin, J.-F.; Sammis, G.M..dav, L. D. S. J. Am. Chem. Soc.2012, 134, 4026-4029. • Drawbacks: • Narrow scope / few substrates • Methodology not for large synthesis scale

  9. Mono-Fluorination – Literature Precedent • Direct C-H fluorination: • Electrophilic / Radical fluorination Bloom, S.; Ross Pitts, C.; Curtin Miller, D.; Haselton, N.; Gargiulo Holl, M.; Urheim, E.; Lectka, T. Angew. Chem., Int. Ed.2012, 51, 10580-10583. Bloom, S.; Ross Pitts, C.; Woltornist, R.; Griswold, A.; Gargiulo Holl, M.; Urheim, E.; Lectka, T. Org. Lett.2013, 15, 1722-1724. • Features: • Catalytic system • Mild reaction conditions • Decent scope

  10. Reaction Proposal • Key steps: • Formation of photoexcited arylketone • Benzylic hydrogen abstraction • Fluorine atom transfer • Regeneration of catalyst • Use of visible light • No transition-metal used • Photoredox chemistry: • Use of visible light • Use of transition-metal (Ru, Ir) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.2013, 113, 5322-5363. Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem.2012, 77, 1617-1622.

  11. Photoexcited Arylketone – Literature Precedent • Yang’s report: • Acetone in cyclohexane gives cyclohexylpropan-2-ol under UV light • Intramolecular reaction: Norrish-Yang cyclization • Intramolecular H abstraction at  position and cyclization • Benzophenone: • Acts like acetone • Known to abstract hydrogen from the triplet state (photo-excited state) • Abstracts hydrogen from cylohexane or ethylbenzene (benzylic position) • Drawbacks: • Use of UV light (mercury lamp) • High dilution conditions Yang, N. C.; Yang, D.-D. H. J. Am. Chem. Soc. 1958, 80, 2913-2914. http://goldbook.iupac.org/N04218.html. Walling, C.; Gibian, M. J. J. Am. Chem. Soc.1965.

  12. Reaction Conditions – Optimization 4,2$/g 5,7$/g 21,3$/g 76,1$/g 49,2$/g • Features: • Use of visible light effective with compact fluorescent lamp (cheap!) • 9-fluorenone has suitable chromophore for visible light • Ir(ppy)3 does not promote benzylic fluorination • Not water sensitive but oxygen sensitive • Cheap electrophilic fluorine source

  13. Benzylic Monofluorination – Scope • Features: • Fast reaction with EDG (if too electron rich, side reaction with Selectfluor) • Aromatic halides tolerated (no UV light used) • 1 and 2 alcohols not compatible • MIDA boronate tolerated under reaction conditions

  14. Difluorination – Literature Precedent • Baran’s zinc sulfinate salt: • Broad scope of nitrogen-rich heterocycle / not possible on benzene ring • Good group tolerance • Salt commercially available Zhou, Q.; Ruffoni, A.; Gianatassio, R.; Fujiwara, Y.; Sella, E.; Shabat, D.; Baran, P. S. Angew. Chem., Int. Ed.2013, 52, 3949-3952. Patrick, T. B.; Flory, P. A. J. Fluorine. Chem. 1984, 25, 157-164. York, C.; Prakash, G. K. S.; Olah, G. A. Tetrahedron1996, 52, 9-14. Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc.2012, 134, 5524-5527. • Other methods: • Electrochemical difluorination (mixture of products) • Few difluorination methods available

  15. Benzylic Difluorination – Optimization • Features: • Xanthone (C) is electron-rich enough to promote difluorination • Selectfluor II effective with xanthone (C)

  16. Benzylic Difluorination – Scope • Features: • No or less than 5% of monofluorinated product in all cases • Aromatic halides tolerated (no UV light used) • MIDA boronate tolerated under reaction conditions

  17. Mechanistic Studies • Features: • Visible light and catalyst are required • No reaction in the dark • No thermal radical process • 9-fluorenone doesn’t act as an energy transfer photosensitizer • Reaction works in the presence of a 400 nm long-pass filter • Kinetic isotope effect (KIE) : • C-H abstraction in the rate-limiting step

  18. Mechanistic Studies • Site preference for reaction : • 2  1  3 • Electron rich substrates react faster than electron-poor substrates • Gram scale reaction: • 20 mmol scale • No flash chromatography!

  19. Surprise Slide! Happy birthday Mylène!

  20. Conclusions • Monofluorination: • Mild reaction conditions • Broad scope • Difluorination: • Mild reaction conditions • First catalytic C-H difluorination • General • Use of visible light • Application to gram scale reactions • No transition-metal required • Further improvements: • Use of continuous-flow conditions • Application to the synthesis of a drug

More Related