1 / 46

Universal QC schemes using only simple measurements:

kimi
Télécharger la présentation

Universal QC schemes using only simple measurements:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Unifying & Simplifying Measurement-based Quantum Computation Schemes Debbie Leung, Caltechquant-ph/0404082,0404132Joint works with Panos Aliferis, Andrew Childs, & Michael NielsenHashing ideas from Charles Bennett, Hans Briegel, Dan Browne, Isaac Chuang, Daniel Gottesman, Robert Raussendorf, Xinlan Zhou

  2. Universal QC schemes using only simple measurements:

  3. j0i ⋮ j0i = = B = = = = u B B = = = = u u B B Universal QC schemes using only simple measurements: 1) One-way Quantum Computer “1WQC” (Raussendorf & Briegel 00) 2) Teleportation-based Quantum Computation “TQC” (Nielsen 01, L) 1WQC: • Universal entangled initial state • 1-qubit measurements TQC: • Any initial state (e.g. j00L0i) • 1&2-qubit measurements

  4. strawberry ice-cream & strawberry smoothy Qn: are 1WQC & TQC related & can they be simplified? Here: derive simplified versions of both using “1-bit-teleportation” (Zhou, L, Chuang 00) (simplified version of Gottesman & Chuang 99) Rest of talk: 0. Define simulation 1. Review 1-bit-teleportation milk strawberry 2. Derive intermediate simulation circuits (using much more than measurements) for a universal set of gates 3. Derive measurement-only schemes freeze & mix or mix & freeze

  5. 00 : : 0 0/1 U5 U3 U1 0/1 : U4 : Un U2 0/1 time Standard model for universal quantum computation : DiVincenzo 95 Computation: gates from a universal gate set initial state measure

  6. j XaZb k j XcZd U (a,b) e.g. U simulates itself  j,a,b UXaZbj = XcZdUj  U  Clifford group Simulation of componentsup to known “leftist” Paulis e.g. U  j (input to U),  XaZb (arbitrary known Pauli operator) X,Z: Pauli operators, a,b,c,d {0,1} Wanted Simulation j U j U (c,d) only depends on (a,b,k)

  7. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 0/1 U5 U3 U1 0/1 : Un U2 0/1

  8. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XaZb 0/1 U5 U3 U1 U1 XaZb 0/1 : Un XaZb U2 U2 0/1

  9. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XaZb 0/1 U5 U3 U1 XaZb 0/1 : Un XaZb U2 0/1

  10. U1 U2 Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XaZb 0/1 U5 U3 XaZb 0/1 : Un XaZb 0/1

  11. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XcZd 0/1 U5 U3 U1 XcZd 0/1 : Un XaZb U2 0/1

  12. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XaZb 0/1 U5 U3 U1 XaZb 0/1 XaZb : Un XaZb U2 0/1

  13. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XaZb 0/1 U5 U3 XaZb U1 0/1 XaZb : Un XaZb U2 0/1 Propagate errors without affecting the computation. Final measurement outcomes are flipped in a known (harmless) way.

  14. 1-bit teleportation

  15. H c d d c X-rtation (XT) |i d |0i H Xd|i Z-Telepo (ZT) Teleportation without correction |i H c |0i Zc|i NB. All simulate “I”. CNOT: Hadamard: Recall: Pauli’s: I, X, Z H

  16. Simulating 1-qubit gates & controlled-Z with mixed resources.

  17. Goal: perform Z rotation eiqZ

  18. Z-Telep (ZT) Goal: perform Z rotation eiqZ |i H c |0i Zc|i

  19. XaZb|i ei(-1)aqZ H c |0i Zcei(-1)aqZ XaZb|i = Xa Zc+beiqZ|i Z-Telep (ZT) Goal: perform Z rotation eiqZ |i H c |0i Zc|i XaeiqZ Input state = ei(-1)aqZ XaZb|i

  20. Z-Telep (ZT) Simulating a Z rotation eiqZ XaZb|i |i ei(-1)aqZ H c H c |0i Xa Zc+beiqZ|i |0i Zc|i

  21. Z-Telep (ZT) Simulating a Z rotation eiqZ XaZb|i |i ei(-1)aqZ H c H c |0i Xa Zc+beiqZ|i |0i Zc|i X-Telep (XT) Simulating an X rotation eiqX XaZb|i ei(-1)bqX |i d d |0i Xa+d ZbeiqX|i |0i H H Xd|i

  22. Simulating a C-Z Xa1Zb1 Xa2Zb2|i d1 d2 |0i H |0i H Xa1+d1Zb1+a2+d2Xa2+d2Zb2+a1+d1 C-Z|i X-Telep (XT) |i d |0i H Xd|i 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1 C-Z: =

  23. From simulation with mixed resources to TQC -- QC by 1&2-qubit projective measurements only

  24. Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c |0i Xa Zc+beiqZ|i

  25. Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c Xa+a2 Zc+beiqZ|i “Xa2” |0 up to Xa2 An incomplete 2-qubit measurement, followed by a complete measurement on the 1st qubit .

  26. Simulating a Z rotation eiqZ XaZb|i c Xa+a2 Zc+beiqZ|i “Xa2”

  27. Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c Xa+a2 Zc+beiqZ|i “Xa2” Simulating an X rotation eiqX XaZb|i ei(-1)bqX d Xa+d Zb+b2eiqX|i “Zb2”

  28. Xa1’ Zb1’  Xa2’ Zb2’ C-Z|i Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c Xa+a2 Zc+beiqZ|i “Xa2” Simulating an X rotation eiqX XaZb|i ei(-1)bqX d Xa+d Zb+b2eiqX|i “Zb2” Xa1Zb1 Xa2Zb2|i Simulating a C-Z d1 d2 |0i H |0i H

  29. Xa1’ Zb1’  Xa2’ Zb2’ C-Z|i Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c Xa+a2 Zc+beiqZ|i “Xa2” Simulating an X rotation eiqX XaZb|i ei(-1)bqX d Xa+d Zb+b2eiqX|i “Zb2” Xa1Zb1 Xa2Zb2|i Simulating a C-Z d1 d2 |0i H |0i H

  30. Xa1’ Zb1’  Xa2’ Zb2’ C-Z|i Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c Xa+a2 Zc+beiqZ|i “Xa2” Complete recipe for TQC based on 1-bit teleportation Simulating an X rotation eiqX XaZb|i ei(-1)bqX d Xa+d Zb+b2eiqX|i “Zb2” Xa1Zb1 Xa2Zb2|i Simulating a C-Z d1 d2

  31. See more improvements in quant-ph/0404132Punchline : 2m 2-qubit & 2m+n 1-qubit measurements for a circuit of n qubits with m C-Zs & arbitrary 1-qubit gates

  32. Deriving 1WQC-like schemes using gate simulations obtained from 1-bit teleportation 1WQC: • Universal entangled initial state •Feedforward 1-qubit measurement

  33. General circuit: ... Alternating: (1) 1-qubit gates (2) nearest neighbor optional C-Z

  34. Rz Rz Rz Rz Rz Rz Rx Rx Rx Rx Rx Rx Rz Rz Rz Rz Rz Rz General circuit: Rz Rz Rz Rz ... Alternating: (1) 1-qubit gates (2) nearest neighbor optional C-Z Euler-angle decomposition Z rotations + optional C-Z – X rotations – Z rotations + optional C-Z – X rotations – .... simulate these 2 things

  35. Xa1 Zb1+a2k Xa2 Zb2 +a1k C-Zk|i Xa1 Zc1+b1+a2k Xa2 Zc2+b2+a2k eiq1Zeiq2ZC-Zk|i Simulating an X rotation eiqX XaZb|i ei(-1)bqX d |0i Xa+d ZbeiqX|i H Adding an optional C-Z right before Z rotations ei(-1)a1q1Z H c1 Xa1Zb1 Xa2Zb2|i ei(-1)a2q2Z c2 H |0i |0i

  36. Chaining up C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations ... c1 c1 c2 c2 ei(-1)bqX d1 ei(-1)bqX d2 |0i H |0i H optional ei(-1)a1q1Z H |i ei(-1)a2q2Z H |0i |0i ei(-1)a1q1Z H ei(-1)a2q2Z H |0i |0i ei(-1)bqX d1 ei(-1)bqX d2 |0i H |0i H

  37. Chaining up C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations ... = c1 c1 H H c2 c2 optional Use H|0i = |+i, HH=I ei(-1)a1q1Z H |i ei(-1)a2q2Z H |0i H H |0i H H ei(-1)bqX H H d1 H H ei(-1)bqX d2 |0i H |0i ei(-1)a1q1Z H H ei(-1)a2q2Z H |0i H H |0i H H ei(-1)bqX d1 H H H ei(-1)bqX H d2 |0i H |0i H

  38. Chaining up C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations ... c1 c1 c2 c2 |i = |+i Let , optional Then, initial state = ei(-1)a1q1Z H |i ei(-1)a2q2Z H |+i |+i ei(-1)bqX H d1 H ei(-1)bqX d2 |+i |+i ei(-1)a1q1Z H ei(-1)a2q2Z H |+i |+i ei(-1)bqX d1 H ei(-1)bqX H d2 |+i |+i

  39. Circuit dependent initial state: 3 qubits, 8 cycles of C-Z + 1-qubit rotations C-Z Z-rotations X-rotations

  40. |+i d1  |+i Simulating a C-Z d2   d1  d2 |0i H |0i H Simulating an optional C-Z: To do the C-Z: turns out equiv to Gottesman’s remote-CNOT

  41. |+i d1 |+i d2 |+i d1 |+i d2 Simulating an optional C-Z: To do the C-Z: To skip the C-Z: Thus: gives the ability for simulating

  42. Universal Initial state 3 qubits, 8 cycles

  43. Starting from the cluster state measure in Z basis

  44. Universal Initial state 3 qubits, 8 cycles

  45. Starting from the cluster state measure in Z basis

  46. Summary: Unified derivations, using 1-bit teleportation, for 1WQC & TQC + simplificationsDetails in quant-ph/0404082,0404132 ... but perhaps you don’t need to see them, you only need to remember what is a simulation (milk), what 1-bit teleportation does (strawberry), and the rest (mix/freeze) comes naturally. Related results by Perdrix & Jorrand, Cirac & Verstraete.

More Related