1 / 24

The S=1/2 quantum magnet TiOCl studied by photoemission spectroscopy Michael Sing (U Würzburg)

The S=1/2 quantum magnet TiOCl studied by photoemission spectroscopy Michael Sing (U Würzburg). M. Hoinkis (U Augsburg) J. Schäfer (U Augsburg) photoemission R. Claessen (U Würzburg) & M. Klemm (U Augsburg) crystals S. Horn (U Augsburg)

kina
Télécharger la présentation

The S=1/2 quantum magnet TiOCl studied by photoemission spectroscopy Michael Sing (U Würzburg)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The S=1/2 quantum magnet TiOCl studied by photoemission spectroscopy Michael Sing (U Würzburg) M. Hoinkis (U Augsburg) J. Schäfer (U Augsburg) photoemission R. Claessen (U Würzburg)&M. Klemm (U Augsburg) crystals S. Horn (U Augsburg) H. Benthien (U Marburg) DDMRG E. Jeckelmann (U Hannover) T. Saha-Dasgupta (S. N. Bose Centre, Kolkata, India) LDA+U/LDA+DMFT L. Pisani (U Frankfurt/M) R. Valenti (U Frankfurt/M) S. van Smaalen (U Bayreuth) structureJ. Deisenhofer (U Augsburg)J. Hemberger (U Augsburg) ESR, specific heatA. Loidl (U Augsburg)

  2. Outline: • TiOCl: the story so far… • valence band DOS • dispersions and anisotropy • orbital symmetry and fluctuations • conclusions

  3. dxz, dyz dxy eg t2g dxy dxz, dyz b a O Ti Cl TiOCl: crystal and orbital structure • Issues: • electronic structure: Ti 3d1 Mott insulator • dimensionality  1d vs. 2d? • phase transitions  spin-Peierls? orbital ordering? fluctuations? • doping with n- or p-type carriers  Luttinger liquid? RVB superconductor? from LDA+U:Seidel et al. (2003)Saha-Dasgupta et al. (2004) O Ti Cl

  4. ? TiOCl: phase transitions and fluctuations magnetic susceptibility ESR: Deisenhofer et al. (2005)Kataev et al. (2003) • high-T phase: • transition @ Tc2 = 91 K • Bonner-Fisher suscept.(s=1/2 Heisenberg chain) • fluctuations for T >> Tc2: • NMR pseudogap • anomalous phonon softening/broadening in Raman & IR • insufficient release of entropy at Tc1,2 (from heat capacity)J. Hemberger et al., cond-mat/0501517 low-T phase: first ordertransition@ Tc1 = 67 K Ti-dimerization* spin-Peierls phase* *M. Shaz et al. (2005) Tc1

  5. TiOCl: cluster calculations & optics cluster calculations & optics: Rückamp et al., cond-mat/0503409 Orbital degrees of freedom are quenched Intermediate phase: incommensurate order due to frustrated interchain interactions

  6. TiOCl: angle-integrated photoemission and DOS complete valence band DOS T = 300 K Ti 3d1 O 2p/Cl 3p LDA+U with U = 3.3 eV (R. Valenti et al.)

  7. TiOCl: angle-integrated photoemission and DOS Ti 3d only T = 300 K LDA+U with U = 3.3 eV (R. Valenti et al.) Hubbard Model (DDMRG)(H. Benthien, E. Jeckelmann) LDA+DMFT (IPT)(L. Craco et al., cond-mat/0410472) LDA+DMFT (QMC)(T. Saha-Dasgupta et al., cond-mat/0411631)

  8. b a TiOCl: angle-resolved photoemission (ARPES) complete valence bands Ti 3d O 2p/Cl 3p T = 300 K Ti 3dxy

  9. TiOCl: angle-resolved photoemission (ARPES) Ti 3d band T = 300 K

  10. TiOCl: angle-resolved photoemission (ARPES) Ti 3d band (T=300K) • quasi-1D dispersion along b-axis • a-axis dispersion • b-axis dispersion??

  11. c Evertical hn b sample Ehorizontal e- analyzer h: even v: odd dxy: evendxz/yz: odd even dxy dxz/yz TiOCl: polarization effects in ARPES  horizontal polarization probes even states (dxy)  vertical polarization probes odd states (dxz, dyz)  no sizable contribution of dxz,yz states at room temperature

  12. eg dxz,yz dxy (even) t2g dxy eg dxz/yz dxy dxz,yz (odd) t2g TiOCl: polarization effects in ARPES equilibrium RT structure: LDA+U for frozen phonon mode:T. Saha-Dasgupta et al., EPL 67, 63 (2004)  phonon-induced orbital fluctuations excluded

  13. (AR)PES on TiOCl • Results for T=300 K: • electronic ground state: almost pure Ti 3d1 • quasi-1D dispersion along b-axis ( dxy) • dispersive behavior not explained by LDA+U/DMFT, 1D single-band Hubbard model  spin-Peierls fluctuations? 1D multi-band Hubbard model? • no admixture of dxz,yz dynamical Jahn-Teller effect excluded • Open issues: • electronic structure at low T  x-ray absorption spectroscopy • doping away from Mott insulator (Ti 3d1x)  work in progress

  14. THE END

  15. susceptibility (ESR) Cl c Ti O b TiOCl: a low-dimensional s=1/2 quantum magnet • Eigene Kristallzucht (CVT) mit C1 • Charakterisierung mit A2,B2,C1,C2 • Struktur / Phasenübergängemit van Smaalen (Bayreuth) Dimerisierung in Tieftemp.-Phase: Spin-Gap entsteht durch Spin-Peierls-Übergang (1. Ordnung !)

  16. b Fluctuations • Raman scattering1 • Fluctuation regime T < 200K: • Softening of a BZ-boundary phonon • NMR2 • Pseudogap regime T < 135K: • Suppression of low frequency spin excitations • Specific heat3 • Fluctuations delay the release of the full entropy at Tc1. LDA+U4 Frozen phonon approach: Change of orbital occupancies in a distorted structure “The ground state is described by the dyz and dxz orbitals instead of dxy” 1 G. Caimi et al. (Degiorgi group), Phys. Rev. B 69 (12) 125108 (2004)2 T. Imai and F.C. Chou, cond-mat/03014253 J. Hemberger et al., cond-mat 0501517 4 T. Saha-Dasgupta et al. (Valenti group), Europhys. Lett. 67 (1) 63 (2004)

  17. TiOCl: a low-dimensional s=1/2 quantum magnet • Photoemission: "DOS" gesamtes Valenzband LDA+U: R. Valenti et al. (Frankfurt) Ti 3d LDA+U: R. Valenti et al. (Frankfurt) LDA+DMFT (IPT): Müller-Hartmann et al. (Köln) LDA+DMFT (QMC): Valenti/Lichtenstein(Frankfurt/HH)

  18. SEM 50mm a c b dissolution growth powder crystals TiOCl: crystal growth Chemical Vapor Transport

  19. O Ti eg Cl t2g TiOCl: structure • 2D layered structure • TiO4Cl2 octahedra • Ti 3d1, s = 1/2

  20. c b Cl Ti O TiOCl: low-temperature phase • XRD:* Dimerization below Tc1 • Spin-Peierls phase S = 0 * M. Shaz et al. (van Smaalen group), To appear in Phys. Rev. B.

  21. b dxy dxz, dyz a TiOCl: high-temperature phase For T > 130K,  can be fitted to the Bonner-Fisher-curve.*  1D Heisenberg chain Two posibillities for the 1D direction: * A. Seidel et al., Phys. Rev. B. 67, 020405 (2003)

  22. S Z c X a Y b b dxz,yz dxy a ~250meV TiOCl: electronic structure LDA+U* Ti 3dxy E–EF (eV) O 2p Cl 3p 3dxy 1D chain along b * R. Valenti, Universität Frankfurt

  23. Summary • LDA+U / DMFT cannot explain dispersion / shape of Ti d band • ARPES  1D direction along b axis • Polarization dependence  no pure dxy character of Ti d band

  24. Outlook • Electron doping: • LDA+DMFT*:„A nearly first-order I-M transition with rapid change in the carrier density (...) is clearly seen in the LDA+DMFT results. (...) • suitably intercalated (electron doped) TiOCl may also exhibit unconventional superconductivity upon metallization.“ • Growth of Ti1-xVxOCl • In situ Alkali doping * L. Craco et al. (Müller-Hartmann group), cond-mat/0410472

More Related