1 / 15

Study of isomeric states using gamma spectroscopy around N=40

Study of isomeric states using gamma spectroscopy around N=40.

kyrene
Télécharger la présentation

Study of isomeric states using gamma spectroscopy around N=40

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Study of isomeric states using gamma spectroscopy around N=40 C. Petrone1,2, J. M. Daugas3, M. Stanoiu1, F. Negoita1, G. Simpson4, C. Borcea1, R. Borcea1, L. Caceres5, S. Calinescu1, R.Chevrier3, L. Gaudefroy3, G. Georgiev6, G. Gey4, C. Plaisir3, F. Rotaru1, O. Sorlin5, J. C. Thomas5 1 HoriaHulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Bucharest- Magurele, Romania 2 Faculty of Physics, University of Bucharest - P.O. Box MG 11, RO 77125, Bucharest-Magurele, Romania, EU 3 CEA, DAM, DIF, F-91297 Arpajon, France 4 ILL, 38042 Grenoble Cedex, France 5 Grand Accélérateur National d’IonsLours (GANIL), CEA/DSM-CNRS/IN2P3, Caen, France 6 CSNSM, CNRS/IN2P3, 91405 Orsay-Campus, France Carpathian Summer School of Physics Sinaia 2012 cristina.petrone@tandem.nipne.ro

  2. 67Fe Motivation:Neutron-rich nuclei around N = 40 • Nuclear structure informations far from stability • N = 40 subshell closure for Ni R.Broda et al., Phys.Rev.Lett. 74 (1995) • Deformation in 66Fe  vanishing • Isomeric state in 67Fe M.Sawicka et al., Phys.Rev.C 77,054306(2008) • Nuclear structure of neutron-rich nuclei lying • between 68Ni and 78Ni-> modelization of • astrophysical processes

  3. 50 g9/2 40 f5/2 p3/2 28 f7/2 p n J.-M. Daugas Phys.Rev.C 81 (2010) 86Kr on Ni target 2 isomeric states The key role of the n g9/2 for 40 < N < 50 • Neutron-rich Cu isotopes (Z=29): • 1 p outside Z=28 core interacting with ng9/2 • Spin-isospin interaction • Tensor force 75Cu • N = 46 (75Cu):p1f5/2 g.s. configuration • K.Flanagan , Phys. Rev.C80(2009) 1096 1|2- 454 1|2- 1|2- 1|2- 135

  4. LEPS Fragments 70° HPGe Veto (Si) Electron detector (SILI) HI-detectors(Si) Shield Experimental set-up • Fragmentation of 86Kr @ 60 MeV/u on Be (500um) • Beam intensity: 4 mAe Veto detector: Double Side Strip Si detector Fragments separated in flight using LISE2000 Compact reaction chamber -> high efficiency detection Implantation foil (Kapton) 75 um Effective thickness = 219 um Al degrador A, Z identification by Energy-loss and TOF informations  Si position sensitive detectors

  5. Identification matrix • ΔE, ToF, Bρ • Delayed γ-ray correlations 78Ga31+ Z 75Cu29+ +72Cu28+ AoQ

  6. 75Cu gamma spectrum J.M.Daugas et al., Phys.Rev.C 81(2010) 62.2(4)keV 66.5(4)keV 66.5keV transition 62.2keV transition E(keV) T(ns)

  7. γ-γ coincidences Coincidence spectra 66.5keV gated Coincidence spectra 62.2keV gated E(keV) E(keV) 51 270(1.76us) 6- Coincidence spectra background gated 82 220 4- 138 3- 138 2- 72Cu decay scheme M.Stanoiu PhD thesis (2003) E(keV)

  8. Gamma times • Fit function: convolution between a gaussian and an exponential T1/2=149(6)ns 66.5keV gated T1/2=296(10)ns 62.2keV gated T(ns) Almost 100%feeding from the uppper isomeric state T(ns)

  9. 75Cu- possible decay schemes Systematics of the energies of the 1/2- 5/2- states in 63-73Cu Estimation for internal conversion coefficients T. Kidebi et al., Nucl.Instrum. Methods A 589(2008) M1 E2 M1 M1 3/2- 1/2- 66.5 66.5 E2 M1 3/2- 1/2- 62.2 62.2 Scenario A Shell model calculation : B(E2)=19.9 W.u. for 62.2keV transition B(M1)=0.009 W.u for 62.2keV transition Scenario B 5/2- 5/2- • B(E2; 1/2– 5/2–)=22.9(4) W.u. • B(M1; 3/2– 5/2–)=2.2(5)*10-4 W.u. • B(E2; 1/2– 5/2–)=7.89(5) W.u. • B(M1; 3/2– 5/2–)=1.51(4)*10-4W.u.

  10. 78Ga : gamma spectrum 2- J.-M. Daugas PhD thesis (1999) E. Mane et al., Phys. Rev. C 84(2011) 218.4(2) 281.3(2) 157.5(2) 60.2(2) 211(5) 341.3(3) 498.9(8) E(keV)

  11. 78Ga:time spectra Coincidence spectra gated on 281.4keV transition -> 211+2281.4=492.4(3)keV energy of the decaying state T1/2=111(2)ns 280keV gate 211keV new transition T(ns) E(keV) T1/2=110(5)ns 211keV gate • Background subtraction • Fit function: convolution between a Gaussian and an exponential function • Same half-life • Feeding from the isomeric state-> 6.6(3)keV transition between the two state T(ns)

  12. 78Ga: transition probabilities 499keV transition (1.33*10-5 s) • B(E1)= 1.35(7)*10-9W.u • B(E2)= 2.88(2)*10-4W.u • B(E3)= 1.36(5)*10-2W.u • B(M1)= 5.52(3)*10-8W.u • B(M2)= 1.33(7)*10-1W.u • B(M3)= 8.08(4)*103W.u • 157.4keV transition (9.78*10-7 s) • B(E1)= 1.27(3)*10-7W.u • B(E2)= 3.96(1)*10-1W.u • B(E3)= 1.87(5)*106W.u • B(M1)= 7.55(2)*10-6W.u • B(M2)= 1.82(5)*102W.u • B(M3)= 1.11(4)*108W.u 218keV transition (2.03*10-7 s) • B(E1)= 3.58(7)*10-7W.u • B(E2)= 4.02(2)*10-1W.u • B(E3)= 9.95(5)*105W.u • B(M1)= 1.47(3)*10-5W.u • B(M2)= 1.85(4)*102W.u • B(M3)= 5.92(4)*107W.u 6.6keV (211keV) transition (3.99*10-6 s) • B(E1)= 4.55(3)*10-7W.u • B(E2)= 3.58(2)*10-2W.u • B(E3)= 9.46(2)*104W.u • B(M1)= 1.23(2)*10-6W.u • B(M2)= 1.65(3)*10W.u • B(M3)= 5.63(8)*106W.u

  13. New spin and parity assignments • Jj44b ->better match with the data overall • Predicts the gradual drop in 2- energy from 74Ga to 78Ga • Same proton configuration as 72,74Cu E2 E2 E2 M2 1+ 498.9 M2 2+ 492.3 4- 341.3 4- 281.3 g.s 2- P.C. Srivastava ,J.Phys.G39(2012) Proposed level scheme for 78Ga

  14. Summary 75Cu • New parity and spin assignments • New level scheme based on γ-γ coincidences results 78Ga • New observed level :492.3(3) keV • New parity and spin assignments • Partial agreement with theoretical models

  15. Thank you Acknowledgments • We are grateful for the technical support provided to us by staff at the GANIL facility. • The author C.Petrone is grateful for the financial support from the European Social Fond through POSDRU 107/1.5/S/80765 Project.

More Related