1 / 52

Monday TEK 12C: Analyze the flow of matter and energy through trophic levels

Monday TEK 12C: Analyze the flow of matter and energy through trophic levels using various models including food chains , food webs, and ecological pyramids Lesson frame : We will analyze the flow of energy and matter through a food chain.

lara
Télécharger la présentation

Monday TEK 12C: Analyze the flow of matter and energy through trophic levels

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Monday • TEK 12C: Analyze the flow of matter and energy through trophic levels • using various models including food chains, food webs, and ecological pyramids • Lesson frame: • We will analyze the flow of energy and matter through a food chain. • I will complete the Looney Labels Food Chain activity • I will be able to correctly answer a food chain question to show understanding.

  2. What is the main source of Energy w/in an Ecosystem? The SUN! It provides Energy for the plants so that they can undergo photosynthesis and grow and then animals eat them.

  3. Aut trophs “Auto” = self “troph” = food They are PRODUCERS! Organisms that use Energy from the environment to make their own food! (e.g.; plants and some bacteria)

  4. Heterotroph “Hetero” = other “troph” = food They are CONSUMERS! Organisms that eat Other organisms to Obtain Energy. (e.g.; mushrooms, leopards, humans, & sharks)

  5. Herbivores Animals that eat ONLY plants, fruits, and “herbs” (e.g.; Fruit Bats, Moose, Elephants, Rabbits, Deer, Cows)

  6. Omnivores Animals that eat both autotrophs & heterotrophs (plants and animals) (e.g.; bears, most humans, pigs, dogs, monkeys, ducks & crows)

  7. Carnivores Animals that eat other heterotrophs (animals)… Meat Eaters ONLY! (e.g.; Komodo Dragons, Lions, Tigers, Snakes & Octopus)

  8. Predator vs. Prey Predator Captures and feeds Prey Is eaten or fed on

  9. Decomposers Breaks down organic matter and recycles it back into the earth (this makes them the ultimate top level consumer) (e.g.; fungi/ mushrooms, and bacteria) Decomposers

  10. Detritivores Scavengers; Feed on DEAD decaying organisms (e.g.; mites, flies, earthworms, snails, crabs, rats & vultures) Detritivores

  11. Teacher: Model the LOONEY LABEL activity Student: work on activity until teacher calls a huddle

  12. Huddle up! Did we get it? Answer the following questions

  13. Food Chain Shows how Energy is transferred “thru” an Ecosystem Sun  Autotrophs  Heterotrophs Shows a linear feeding relationship for 1 particular organism(“Who eats who”) Arrows ALWAYS Point to the 1 who is Enjoying the Meal Some People

  14. Take it away Tuesday • TEK 12C: Analyze the flow of matter and energy through trophic levels • using various models including food chains, food webs, and ecological pyramids • Lesson frame: • I can analyze the flow of energy from one trophic level to another • I can explain the flow of energy and the 10% rule within food chains/webs/pyramids.

  15. Food Web Shows a NETWORK of interconnected feeding relationships within an ecosystem Food Webs are ALL of the Food Chains w/in an Ecosystem linked together (“Who eats who” and “whose being eaten”)

  16. Food Web

  17. Trophic Levels Each step in a food chain or food web PRODUCERS REPRESENTS THE 1ST LEVEL CONSUMERS MAKE UP THE 2ND, 3RD, OR HIGHER LEVELS Each consumer depends on the trophic level below it for energy

  18. Trophic Levels w/in A Food Web Producers Always start a food chain or a food web; plants or bacteria Primary Consumers eat the producers; herbivores

  19. Trophic Levels w/in A Food Web Secondary Consumers Eat the producers and the primary consumers; omnivores Tertiary Consumers Eat the secondary and primary consumers; carnivores = the top Predator

  20. Only 10 percent of the enerey stored in an organism can be passed on to the next trophic level. Of the remaining energy, some is used for the organism’s life processes, and the rest is • Used in reproduction • Stored as body fat • Stored as body tissue • Eliminated as heat

  21. What is the function of bacteria in the food web? • Decomposer • Producer • Primary consumer • Secondary consumer

  22. What to do Wednesday • TEK 12C: Analyze the flow of matter and energy through trophic levels using various models including food chains, food webs, and ecological pyramids • And • 11C: Summarize the role of microorganisms in both maintaining and disrupting the health of both organisms and ecosystems • Lesson frame: • I can analyze all 3 pyramids( energy/mass/numbers) • I can explain the flow of energy and the 10% rule within food chains/webs/pyramids. • I can analyze the flow of energy from one trophic level to another • I can explain how bacteria can help or harm both organisms and ecosytems

  23. The Effects of Toxins in the Food Chain http://www.youtube.com/watch?v=E5P-UoKLxlA

  24. Biomass Pyramids Biomass total amount of living tissue within a given trophic level The Pyramid represents the potential food available for each trophic level.

  25. Pyramids of Numbers Based on the # of organisms at each trophic level. There should always be more producers represented than there are consumers http://www.vtaide.com/png/foodchains-mcq.htm

  26. Energy Pyramids/ The Rule of 10 Only about 10% of the ENERGY available w/in 1 Trophic Level is transferred to organisms at the trophic level above it The rest of the Energy is released in some form of heat (e.g.; when you eat a chicken wing you are only going to absorb 10% of it’s energy)

  27. Usable energy available at each trophic level (in kilocalories) Heat Tertiary consumers (human) 10 Heat Secondary consumers (perch) 100 Heat Decomposers Heat Primary consumers (zooplankton) 1,000 Heat 10,000 Producers (phytoplankton) Fig. 3-15, p. 63

  28. How do microorganisms maintain the health of ecosystems? • Some microorganisms are decomposers that break down organic matter into smaller pieces, eventually releasing raw nutrients back to the ecosystem. • Some bacteria convert nitrogen and other nutrients to forms that can be used by primary producers (plants and other photosynthetic organisms). • Specialized “oil-eating” bacteria help restore ecosystems following oil spills. • Mycorrhizal fungi seem to help ecosystems recover following disturbances. http://www.youtube.com/watch?v=WLk-9ib0OVA

  29. How do microorganisms disrupt the health of ecosystems? • Populations of some usually harmless aquatic microorganisms, including dinoflagellates and the photosynthetic protistEuglena (seen here), can grow exponentially following an influx of nutrients. Such responses to added nutrients are called algal blooms, andthey can be very harmful to ecosystems. • Algal blooms can block sunlight and disrupt photosynthesis. • Blooms of dinoflagellates, called red tides,release toxins into the ecosystem. • Increased rates of decomposition following very large blooms can result in dead zones, areas devoid of oxygen that are inhospitable to multicellular life.

  30. Why couldn‘tyou survive a day without bacteria? • They process our wastes and make them usable again. Without them – nothing would rot. • They purify our water. • Keep our soils productive • Synthesize vitamins in our intestines • Convert our food into useful sugars and polysaccharides • Wage war on alien microbes that enter our digestive system • Pluck nitrogen from the air and convert it into useful nucleotides and amino acids for us.

  31. In general, which trophic level has the most energy available to it? • Primary consumers • Producer • Secondary consumer • Tertiary consumer

  32. The diagram is intended to show relationships in an ecosystem. What do the arrows represent?

  33. Lactose is a naturally occurring sugar found in milk. Some dairy products, such as yogurt, may contain live bacteria. These products are useful to people who lack the ability to digest lactose. What does this information demonstrate? Bacteria raise the acidity of processed foods. Some bacteria interfere with digestion. Bacteria can prevent insulin production. Some bacteria are beneficial to human health.

  34. Thursday we EAT/ DRINK/ AND BE MERRY- During the BEAR LAB

  35. 12 D: Recognize that long term survival of species is dependent on changing resource basis that are limited. (Students can recognize the effects of limited resources in an environment.) Limiting Factors • Lesson frame: • We will recognize the effects of limited resources in an environment. • I will compete for food and water during the bear activity. • I will be able to correctly answer a limiting factor question to show understanding.

  36. Stem Questions: • Suppose you could eat up to 12 times your body weight every day like a hummingbird what would you do maintain your food supply? • Can you predict the outcome if fertilizers were banned? • Can you assess the value of human disturbance within an ecosystem? • What choice would you have made if food was unlimited? • How would you prioritize the effect of a decomposer in replacing limiting factors back into the ecosystem? • What would result if the amount of expected annual rainfall in a desert were to decrease in half? • How would you organize limiting factors to show the difference between biotic and abiotic factors?

  37. Reasons WHY we Compete to Survive… To Obtain: Food Living Space Other Needs in Life

  38. “Competition” Competitive Exclusion Principle Says that in nature: Direct competition often results in a “WINNER” and a “LOSER,” w/ the losing organism failing to survive

  39. What do we know about Populations? All populations will GROW to their CarryingCapacity as long as there is enough food, shelter, & other necessities needed for life!

  40. Carrying Capacity the largest # of individuals that an environment can support… The # right before there is not enough food & space to go around, and individuals will start to die off.

  41. What else would cause a Population to decrease? Such as natural disasters, human disturbances, disease, and predation

  42. Limiting Factor A factor that causes the growth of a population to decrease. Examples 1.Space 2. Water 3. Food 4.Nutrients

  43. Pre Lab Questions What is the relationship between competition and population size? Identify how a limited resource can affect the size of a population. Give an example that illustrates this situation.

  44. Follow the instructions for the Bear lab Regroup later with your teacher to answer some questions and wrap up

  45. An example of an abiotic limiting factor affecting aquatic organisms it the

  46. Any abiotic or biotic factor that controls the number of individual in a population is a. A pollutant b. Chemosynthesis c. A bioaccumulation indicator d. A limiting factor

More Related