1 / 34

Midterm Review

Midterm Review. 0. Please press “1” to test your transmitter. . 0. Sirius, the brightest star in the sky, has a trigonometric parallax of p = 0.385 arc seconds. What is its distance from Earth?. 0.385 pc 0.80 light years 1.255 pc 2.60 light years 8.47 light years. 0. Distances of Stars.

latona
Télécharger la présentation

Midterm Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Midterm Review 0 Please press “1” to test your transmitter.

  2. 0 Sirius, the brightest star in the sky, has a trigonometric parallax of p = 0.385 arc seconds. What is its distance from Earth? • 0.385 pc • 0.80 light years • 1.255 pc • 2.60 light years • 8.47 light years

  3. 0 Distances of Stars d in parsec (pc) p in arc seconds __ 1 d = p Trigonometric Parallax: Star appears slightly shifted from different positions of the Earth on its orbit 1 pc = 3.26 LY The further away the star is (larger d), the smaller the parallax angle p.

  4. 0 Star A has an apparent magnitude of mA = 5.6 and an absolute magnitude of MA = 2.3. Star B has an apparent magnitude of mB = 0.6 and an absolute magnitude of MB = 2.3.Which of the following statements is true? • The flux received from both stars is the same, but star B is 5 times more luminous than star A, so star B must be further away. • The flux received from both stars is the same, but star B is 100 times more luminous than star A, so star B must be further away. • Both stars are equally luminous, but the flux received from star A is 5 times less than from star B, so star A must be further away. • Both stars are equally luminous, but the flux received from star A is 100 times less than from star B, so star A must be further away. • Both stars are equally luminous, but the flux received from star A is 5 times more than from star B, so star B must be further away.

  5. 0 Absolute Magnitude Absolute Magnitude = Magnitude that a star would have if it were at a distance of 10 pc. The absolute magnitude measures a star’s intrinsic brightness (= luminosity). If we know a star’s absolute magnitude, we can infer its distance by comparing absolute and apparent magnitudes.

  6. 0 Which of these spectral types describes a Red Giant? • O3V • F9V • B2Ia • K5III • G2V

  7. 0 Spectral Classification of Stars Temperature

  8. 0 Spectral Classification of Stars Mnemonics to remember the spectral sequence:

  9. 0 Luminosity Classes Ia Bright Supergiants Ia Ib Ib Supergiants II II Bright Giants III III Giants IV Subgiants IV V V Main-Sequence Stars

  10. < 100 solar masses Masses of Stars in the Hertzsprung-Russell Diagram Masses in units of solar masses 40 18 High masses 6 The higher a star’s mass, the more luminous it is. 3 > 0.08 solar masses 1.7 1.0 High-mass stars have much shorter lives than low-mass stars Mass 0.8 0.5 Sun: ~ 10 billion yr. Low masses 10 Msun: ~ 30 million yr. 0.1 Msun: ~ 3 trillion yr.

  11. 0 In a binary star system … • The less massive stars orbits around the more massive one. • The more massive star orbits around the less massive one. • Both stars orbit on identical orbits around the mid-point between them. • Both stars orbit around their center of mass, which is closer to the less massive star. • Both stars orbit around their center of mass, which is closer to the more massive star.

  12. 0 The Center of Mass center of mass = balance point of the system. Both masses equal => center of mass is in the middle, rA = rB. The more unequal the masses are, the more it shifts toward the more massive star.

  13. 0 Which law allows astronomers to calculate the masses of stars in binary systems? • Newton’s first law • Kepler’s third law • Einsteins theory of general relativity • Newton’s third law • Kepler’s second law

  14. Estimating Stellar Masses RewriteKepler’s 3. Law as 1 = aAU3 / Py2 Valid for theSolar system: star with1 solar massin the center. We findalmost the same lawfor binary starswith massesMA and MBdifferent from 1 solar mass: aAU3 ____ MA + MB = Py2 (MA and MB in units of solar masses)

  15. 0 Which is the most common type of binary star systems? • Spectroscopic binaries • Eclipsing binaries • X-ray binaries • Visual binaries (where both stars and their motion can be resolved) • Binary neutron stars

  16. 0 Spectroscopic Binaries The approaching star produces blue shifted lines; the receding star produces red shifted lines in the spectrum. Doppler shift → Measurement of radial velocities → Estimate of separation a → Estimate of masses

  17. 0 Which of these fusion mechanisms does NOT fuse Hydrogen to Helium? • Proton-proton chain • CNO Cycle • Triple-Alpha Process

  18. 0 The CNO Cycle In the sun, energy production is dominated by direct fusion of H into He (PP chain). In stars slightly more massive than the sun, a more powerful energy generation mechanism than the PP chain takes over: The CNO Cycle.

  19. Energy Transport Structure Inner convective, outer radiative zone Inner radiative, outer convective zone CNO cycle dominant PP chain dominant

  20. Summary: Stellar Structure Convective Core, radiative envelope; Energy generation through CNO Cycle Sun Mass Radiative Core, convective envelope; Energy generation through PP Cycle

  21. 0 What are “globules”? • Small planetary bodies, still in the process of growing into planets (“globes”) • Large, cold, uncompressed molecular clouds that may eventually form thousands of stars. • Small, compressed pockets of dense gas that may form stars. • The remnants of the explosions of sun-like stars. • The remnants of the explosions of high-mass stars.

  22. 0 (Bok) Globules Compact, dense pockets of gas which may contract to form stars. ~ 10 – 1000 solar masses; Contracting to form protostars

  23. 0 Jets of gas ejected from protostellar disks are called … • Globules • Planetary Nebulae • Novae • Herbig-Haro Objects • Pulsars

  24. Herbig-Haro Objects

  25. 0 What happens in the Triple-Alpha Process? • Fusion of Hydrogen to Helium • Fusion of Helium to Carbon • Fusion of Carbon to Neon • Fusion of Silicon to Iron • Nuclear fission of Uranium

  26. 0 Red Giant Evolution He-core gets denser and hotter until the next stage of nuclear burning can begin in the core: 4 H → He He He fusion: 3 4He → 12C “Triple-Alpha Process” Fusion of Helium into Carbon

  27. 0 What is a “white dwarf”? • A failed star that does not become hot enough to ignite nuclear fusion. • The burned-out remnant of a very low-mass star that never ignites Helium fusion. • The collapsed Carbon/Oxygen core of a sun-like star. • The collapsed iron core of a high-mass star. • The collapsed iron core of a sun-like star.

  28. 0 White Dwarfs Degenerate stellar remnant (C,O core) Extremely dense: 1 teaspoon of WD material: mass ≈ 16 tons!!! Chunk of WD material the size of a beach ball would outweigh an ocean liner! White Dwarfs: Mass ~ Msun Temp. ~ 25,000 K Luminosity ~ 0.01 Lsun

  29. 0 Summary of Post-Main-Sequence Evolution of Stars Fusion proceeds to formation of Fe core. Evolution of 4 - 8 Msun stars is still uncertain. Fusion stops at formation of C,O core. M > 8 Msun Red dwarfs: He burning never ignites M < 4 Msun M < 0.4 Msun

  30. 0 Which was the first method that allowed astronomers to measure the distances to other galaxies? • Light-travel time measurements • Gravitational-lensing measurements • Trigonometric parallax • Using Cepheid Variables • Warp-Drive travel

  31. 0 Cepheid Variables:The Period-Luminosity Relation The variability period of a Cepheid variable is correlated with its luminosity. The more luminous it is, the more slowly it pulsates. => Measuring a Cepheid’s period, we can determine its absolute magnitude!

  32. 0 If you plot all stars of a star cluster on a Hertzsprung-Russell diagram: Which feature will allow you to determine the cluster’s age? • The brightness of red giants. • The number of white dwarfs. • The average surface temperature of neutron stars. • The turn-off point from the Main Sequence. • The minimum mass of stars at the lower end of the main sequence.

  33. 0 Example:HR diagram of the star cluster M 55 High-mass stars evolved onto the giant branch Turn-off point Low-mass stars still on the main sequence

  34. 0 The lower on the MS the turn-off point, the older the cluster.

More Related