1 / 42

Pohybová aktivita a obezita

Pohybová aktivita a obezita. z hlediska metabolismu kosterních svalů. Rekreologie FTK UP Olomouc. nalačno. zvýšená inzulínová stimulace (např. po jídle). při vytrvalostní tělesné práci nízké a střední intenzity. při intenzivní tělesné práci. glykogen. lipidy. Snížená oxidace?.

liang
Télécharger la présentation

Pohybová aktivita a obezita

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pohybová aktivita a obezita z hlediska metabolismu kosterních svalů Rekreologie FTK UP Olomouc

  2. nalačno • zvýšená inzulínová stimulace (např. po jídle) • při vytrvalostní tělesné práci nízké a střední intenzity • při intenzivní tělesné práci glykogen lipidy Snížená oxidace? Negativní vliv na dlouhodobou regulacitukové rovnováhy

  3. Nalačno: Neefektivní utilizace mastných kyselin kosterními svaly u obézních osob Nižší oxidace MK Stejná spotřeba MK Redukovaná oxidace lipidů kosterními svaly není u obézních osob způsobená nižší nabídkou MK! KELLEY, D.E., SIMONEAU, A., GOODPASTER,B., TROOST, F. Defects of skeletal muscle fatty acid metabolism in obesity. Obes. Res. 1997, vol. 5, p. 21S.

  4. zásobní tuky = spotřebované MK mínus oxidované MK

  5. Při zvýšené produkci inzulínu: Neefektivní utilizace mastných kyselin kosterními svaly u obézních osob Selhání mechanismů potlačujících oxidaci lipidů a preferujících jako energetický substrát glykogen. Při změně produkce inzulínu k přesunu mezi využívanými substráty - metabolická regulační rigidita = porušená odpověď jak na nízkou, tak i vysokou hladinu inzulínu. KELLEY, D.E., SIMONEAU, A., GOODPASTER,B., TROOST, F. Defects of skeletal muscle fatty acid metabolism in obesity. Obes. Res. 1997, vol. 5, p. 21S.

  6. 1. Oxidativní kapacita kosterních svalů pro FA je redukovaná Závěr 1: Závěr 2: 2. Zvýšená dispozice obézních k akumulaci lipidů v kosterních svalech

  7. PŘÍČINY NEROVNOVÁHY MEZI SPOTŘEBOU A OXIDACÍ MK V KOSTERNÍCH SVALECH ????????????????????????????????????????????????????????????????????? SIMONEAU, J.A., KELLEY, D.E., NEVEROVA, M., WARDEN, C.H. Overexpression of muscle uncoupling protein 2 content in human obesity associates with reduced skeletal muscle lipid utilization. FASEB J. 1998, vol. 12, no. 15, p. 1739-1745.

  8. Cytoplazma Vnitřní membrána Matrix acyl-CoA Karnitin Karnitin acyl-CoA Karnitin palmitoyl transferáza I II acylkarnitin acylkarnitin CoA CoA

  9. Pyruvát (3C) NAD+ CO2 NADH + H+ Acetyl-CoA (2C) Acyl-CoA Oxalacetát (4C) Citrát (6C) NAD+ NADH + H+ NAD+ Malát (4C) Izocitrát (6C) Citrát syntáza CO2 Fumarát (4C) NADH + H+ FADH2 Alfa-ketoglutarát (5C) Sukcinát (4C) P FAD Sukcinyl-CoA (4C) CO2 GTP NAD+ NADH + H+ GDP

  10. Uncoupling proteins - UCP (rozpřahující proteiny) Mitochondriální membránové transportní proteiny, ruší protonový gradient (rozpřahují kaskádové reakce, např. fosforylaci od oxidace) UCP2 fosforylace oxidace

  11. RESPIRAČNÍ ŘETĚZEC ATP ATP ATP 1/2 O2 NADH2 NAD+ 1 2 3 H20 ADP+Pi ADP+Pi ADP+Pi

  12. RESPIRAČNÍ ŘETĚZEC ATP ATP ATP NAD+ NADH2 1 2 3 ADP+Pi ADP+Pi ADP+Pi

  13. pyruvát MITOCHONDRIE laktát oxidace glyceraldehyd 3-P 1,3-di P glycerát NAD+ NADH+ + H+ laktát pyruvát

  14. PŘÍČINY NEROVNOVÁHY MEZI SPOTŘEBOU A OXIDACÍ MK V KOSTERNÍCH SVALECH ????????????????????????????????????????????????????????????????????? SIMONEAU, J.A., KELLEY, D.E., NEVEROVA, M., WARDEN, C.H. Overexpression of muscle uncoupling protein 2 content in human obesity associates with reduced skeletal muscle lipid utilization. FASEB J. 1998, vol. 12, no. 15, p. 1739-1745.

  15. Centrálnější distribuce tukových kapének ve svalových vláknech obézních než štíhlých (27,2±5,7%vs 19,7±6,4%; P<0.05) MALENFANT, P., JOANISSE, D.R., THERIAULT, R., GOODPASTER, B.H., KELLEY, D.E., SIMONEAU, J.A. Fat content in individual muscle fibers of lean and obese subjects. Int. J. Obes. Relat. Metab. Disord. 2001, vol. 25, no. 9, p. 1316-1321.

  16. Inzulínová rezistence buněčná membrána ATP IRS cAMP kinázy Protein- kináza B Transport glukózy do svalové buňky Atypická protein- kináza C

  17. METABOLICKÝ SYNDROM Dyslipo proteinémie Centrální obezita Hyperinzulinémie + inzulínová rezistence Zvýšená srážlivost krve Mírná hypertenze Zvýšená hladina adrenalinu v krvi Zvýšená aktivita sympatiku

  18. KELLEY, D.E., GOODPASTER, B.H. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes Care. 2001, vol. 24, no. 5, p. 933-941. Dyslipo proteinémie Centrální obezita Hyperinzulinémie + inzulínová rezistence Zvýšená srážlivost krve Mírná hypertenze Zvýšené množství tukových depozit v kosterních svalech Zvýšená hladina adrenalinu v krvi Zvýšená aktivita sympatiku

  19. Obsah tuku ve svalech, zjišťovaný pomocí počítačové tomografie nebo svalové biopsie, má u obézních osob největší, na viscerálním tuku nezávislou,prediktivní hodnotu pro inzulínovou rezistenci • GOODPASTER, B.H., THAETE, F.L., SIMONEAU, J.A., KELLEY, D.E. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes. 1997, vol. 46, no. 10, p. 1579-1585. • PAN, D.A., LILLIOJA, S., KRIKETOS, A.D., MILLER, M.R., BAUR, L.A., BOGARDUS, C., JENKINS, A.B., STORLIEN, L.H. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997, vol. 46, no. 6, p. 983-988.

  20. ? PŘÍČINY INZULÍNOVÉ REZISTENCE V KOSTERNÍCH SVALECH ? AHMAD, F., AZEVEDO, J.L., CORTRIGHT, R., OHM, G.L., GOLDSTEIN, B.J. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J. Clin. Invest. 1997, vol. 100, no. 2, p. 449-458. NARUŠENÁ REGULACE SIGNALIZACE INZULÍNOVÝCH RECEPTORŮ EVANS, D.J., MURRAY, R., KISSEBAH, A.H. Relationship between skeletal muscle insulin resistance, insulin-mediated glucose disposal, and insulin binding. Effects of obesity and body fat topography. J. Clin. Invest. 1984, vol. 74, no. 4, p. 1515-1525. ZHORŠENÉ INZULÍNEM STIMULOVANÉ USKLADŇOVÁNÍ GLUKÓZY ROTHMAN, D.L., MAGNUSSON, I., CLINE, G., GERARD, D., KAHN, C.R., SHULMAN, R.G., SHULMAN, G.I. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. U.S.A. 1995, vol. 92, no. 4, p. 983-987. PORUŠENÝ TRANSPORT A FOSFORYLACE GLUKÓZY

  21. ? PŘÍČINY INZULÍNOVÉ REZISTENCE V KOSTERNÍCH SVALECH ? NARUŠENÁ REGULACE SIGNALIZACE INZULÍNOVÝCH RECEPTORŮ ZHORŠENÉ INZULÍNEM STIMULOVANÉ USKLADŇOVÁNÍ GLUKÓZY PORUŠENÝ TRANSPORT A FOSFORYLACE GLUKÓZY • COLBERG, S.R., SIMONEAU, J.A., THAETE, F.L., KELLEY, D.E. Skeletal muscle utilization of free fatty acids in women with visceral obesity. J. Clin. Invest. 1995, vol. 95, no. 4, p. 1846-1853. • KELLEY, D.E., SIMONEAU, A., GOODPASTER,B., TROOST, F. Defects of skeletal muscle fatty acid metabolism in obesity. Obes. Res. 1997, vol. 5, p. 21S. REDUKOVANÁ KAPACITA KOSTERNÍCH SVALŮ PRO OXIDACI TUKŮ zvýšená esterifikace a ukládání tuků v kosterních svalech menší využitelnost MK

  22. ? PŘÍČINY INZULÍNOVÉ REZISTENCE V KOSTERNÍCH SVALECH ? INZULÍNOVÁ REZISTENCE defekt metabolismu sacharidů defekt metabolismu MK

  23. Poměr mezi využitím glukózy (Rd – ukazatel inzulínové senzitivity) během inzulínové stimulace a poměrem aktivity hexokinázy (glykolytický enzym) k aktivitě citrát syntázy (oxidativní enzym) u diabetiků, obézních a štíhlých zdravých osob KELLEY, D.E., SIMONEAU, A., GOODPASTER,B., TROOST, F. Defects of skeletal muscle fatty acid metabolism in obesity. Obes. Res. 1997, vol. 5, p. 21S.

  24. JOHNSON, N.A., STANNARD, S.R., THOMPSON, M.W. Muscle triglyceride and glycogen in endurance exercise: implications for performance. Sports Med. 2004, vol. 34, no. 3, p. 151-164. Sportovní medicína dříve – manipulace s krátkodobými změnami příjmu živin - akcentování glykogenu jako energetického substrátu (glykogenová superkompenzace před závody) ? ?

  25. JOHNSON, N.A., STANNARD, S.R., THOMPSON, M.W. Muscle triglyceride and glycogen in endurance exercise: implications for performance. Sports Med. 2004, vol. 34, no. 3, p. 151-164. Intracelulární tuky - významný svalový energetický substrát - využíván při prolongovaném zatížení U výborně vytrvalostně trénovaných osob ukládání lipidů za podmínek sníženého příjmu sacharidů dominantní tvorba zásobních lipidů relativně rychlá

  26. JOHNSON, N.A., STANNARD, S.R., THOMPSON, M.W. Muscle triglyceride and glycogen in endurance exercise: implications for performance. Sports Med. 2004, vol. 34, no. 3, p. 151-164. Intracelulární tuky - významný svalový energetický substrát - využíván při prolongovaném zatížení Intramyocelulární lipidy stejně dostupný energetický substrát jako glykogen Dobře vytrvalostně trénovaní sportovci snadno využívají ? tuková superkompenzace před závody ?

  27. Vliv vytrvalostní tělesné práce na hladinu volných mastných kyselin a glycerolu v plazmě a na množství intracelulárních lipidů v pracujících a nepracujících svalech SCHRAUWEN-HINDERLING, et al. Intramyocellular lipid content is increased after exercise in nonexercising human skeletal muscle. J Appl Physiol. 2003, vol. 95, no. 6, p. 2328-23.

  28. SCHRAUWEN-HINDERLING, V.B., VAN LOON, L.J., KOOPMAN, R., NICOLAY, K., SARIS, W.H., KOOI, M.E. Intramyocellular lipid content is increased after exercise in nonexercising human skeletal muscle. J. Appl. Physiol. 2003b, vol. 95, no. 6, p. 2328-23. Hladina inzulínu v krvi před a po 14 denním vytrvalostním tréninku(otevřený symbol – před tréninkem, plný červený symbol – po tréninku) se významně neliší

  29. SCHRAUWEN-HINDERLING, V.B., VAN LOON, L.J., KOOPMAN, R., NICOLAY, K., SARIS, W.H., KOOI, M.E. Intramyocellular lipid content is increased after exercise in nonexercising human skeletal muscle. J. Appl. Physiol. 2003b, vol. 95, no. 6, p. 2328-23. Obsah intramyocelulárních lipidůpo 14 denním vytrvalostním tréninkuBílý sloupec – před zátěží, černý sloupec – po zátěži se významně zvyšuje před tréninkem po tréninku

  30. Zvýšení množství intramyocelulárních tuků je velmi časnou odpovědí na trénink, která předchází zvýšení inzulínové senzitivity Při nedostatku pohybu je zvýšená přítomnost triglyceridů ve svalech příčinou inzulínové rezistence Při vytrvalostním tréninku zvýšená přítomnost triglyceridů ve svalech nemá negativní vliv na účinnost inzulínu !!!

  31. BOESCH, C., SLOTBOOM, J., HOPPELER, H., KREIS, R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn. Reson. Med. 1997, vol. 37, no. 4, p. 484-493. Během vytrvalostní práce dochází k depleci intramyocelulárních tukových depot

  32. BRUN, J.F., VARLET-MARIE, E., CASSAN, D., MANETTA, J., MERCIER, J. Blood fluidity is related to the ability to oxidize lipids at exercise. Clin. Hemorheol. Microcirc. 2004, vol. 30, no. 3-4, p. 339-343. Obézní osoby nebo diabetici 2. typu kosterní svaly metabolicky neflexibilní Zdravé štíhlé osoby kosterní svaly metabolicky flexibilní při vytrvalostní práci dominantní využití tuků při vytrvalostní práci využití tuků klesá při intenzivní zátěži v důsledku zvýšené oxidace lipidů snížená oxidace glykogenu při intenzivní zátěži dominantní využití glykogenu

  33. BRUN, J.F., VARLET-MARIE, E., CASSAN, D., MANETTA, J., MERCIER, J. Blood fluidity is related to the ability to oxidize lipids at exercise. Clin. Hemorheol. Microcirc. 2004, vol. 30, no. 3-4, p. 339-343. Obézní osoby nebo diabetici 2. typu kosterní svaly metabolicky neflexibilní při vytrvalostní práci využití tuků klesá KLESÁ VYTRVALOSTNÍ KAPACITA KLESÁ MAXIMÁLNÍ AEROBNÍ KAPACITA při intenzivní zátěži v důsledku zvýšené oxidace lipidů snížená oxidace glykogenu

  34. COLBERG, S.R., HAGBERG, J.M., McCOLE, S.D., ZMUDA, J.M., THOMPSON, P.D., KELLEY, D.E. Utilization of glycogen but not plasma glucose is reduced in individuals with NIDDM during mild-intensity exercise. J. Appl. Physiol. 1996, vol. 81, no. 5, p. 2027-2033. Oxidace glykogenu (40-minutové práci při 40% VO2 max) ** ***

  35. BRUN, J.F., VARLET-MARIE, E., CASSAN, D., MANETTA, J., MERCIER, J. Blood fluidity is related to the ability to oxidize lipids at exercise. Clin. Hemorheol. Microcirc. 2004, vol. 30, no. 3-4, p. 339-343. Snížená schopnost oxidovat a periodicky snižovat svalové triglyceridy při vytrvalostní práci Zvýšené množství krevních tuků Zvýšená tvorba volných radikálů Zvýšená viskozita krve Deformace erytrocytů

  36. BRUN, J.F., VARLET-MARIE, E., CASSAN, D., MANETTA, J., MERCIER, J. Blood fluidity is related to the ability to oxidize lipids at exercise. Clin. Hemorheol. Microcirc. 2004, vol. 30, no. 3-4, p. 339-343. Pravidelná pohybová aktivita Snižuje množství krevních tuků Snižuje tvorbu volných radikálů ŘADA POZITIVNÍCH VLIVŮ NA ZDRAVÍ ČLOVĚKA

  37. BERGGREN, J.R., HULVER, M.W., DOHM, G.L., HOUMARD, J.A. Weight loss and exercise: implications for muscle lipid metabolism and insulin action. Med. Sci. Sports Exerc. 2004, vol. 36, no. 7, p. 1191-1195. • GOODPASTER, B.H., THAETE, F.L., SIMONEAU, J.A., KELLEY, D.E. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes. 1997, vol. 46, no. 10, p. 1579-1585. Pravidelná pohybová aktivita Zvýšená oxidace MK Zvýšená účinnost inzulínu v kosterním svalstvu Snížení hyperinzulinémie DRISCOLL, S.D., MEININGER, G.E., LJUNGQUIST, K., HADIGAN, C., TORRIANI, M., KLIBANSKI, A., FRONTERA, W.R., GRINSPOON, S. Differential effects of metformin and exercise on muscle adiposity and metabolic indices in human immunodeficiency virus-infected patients. J. Clin. Endocrinol. Metab. 2004, vol. 89, no. 5, p. 2171-2178.

  38. Intramyocelulární lipidy v m. vastus lateralis před (pre) a po 15 týdenní energetické restrikci (ER 700 kcal/day) a 20 týdenním vytrvalostním tréninku + nízkoenergetické dietě (ET-LFD).    Redukce hmotnosti ze 100 ±6 kg na 89 ± 6 kg během ER a na 84 ± 4 kg po ET-LFD Glykogen v m. vastus lateralis před (pre) a po energetické restrikci (ER) a vytrvalostním tréninku + nízkoenergetické dietě (ET-LFD).     MALENFANT, P., TREMBLAY, A., DOUCET, E., IMBEAULT, P., SIMONEAU, J.A., JOANISSE, D.R. Elevated intramyocellular lipid concentration in obese subjects is not reduced after diet and exercise training. Am J Physiol Endocrinol Metab. 2001, vol. 280, no. 4, p. E632-639.

  39. Index celkového množství intramuskulárních lipidů (ORO fraction) u šesti morbidně obézních osob před a po redukci hmotnosti GRAY, R.E., TANNER, C.J., PORIES, J.W., MACDONALD, K. G., AND HOUMARD, J. A. Effect of weight loss on muscle lipid content in morbidly obese subjects. Am. J. Physiol. Endocrinol. Metab. 2003, vol. 284. no 4, p. E726 - 732.

  40. způsob intervence atd. atd. Změna intramyocelulárních lipidů na základě redukce hmotnosti atd. atd. atd. atd. atd. genetická výbava vstupní hodnoty intramuskulárních lipidů atd. atd. atd. atd. atd.

  41. Dominantní paradigma = porto-viscerální hypotéza zvýšená viscerální adipozita inhibice účinnosti inzulínu těžká inzulínová rezistence RAVUSSIN, E., SMITH, SR. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann. N. Y. Acad. Sci. 2002, vol. 967, p. 363-378. syndrom ektopických tukových zásob Kosterní svaly Játra Β-buňky endokrinní žláza s multifaktoriálním zásahem do metabolismu ostatních tkání angiotenzin II leptin interleukin-6 rezistin adiponectin

  42. Redukce hmotnosti založená na racionální dietě a pravidelném cvičení zvýšená viscerální adipozita inhibice účinnosti inzulínu těžká inzulínová rezistence výrazně snižuje riziko, které je spojeno se zvýšeným množstvím intramuskulárních lipidů u obézních osob syndrom ektopických tukových zásob Kosterní svaly Játra Β-buňky endokrinní žláza s multifaktoriálním zásahem do metabolismu ostatních tkání redukce intramuskulárních lipidů

More Related