1 / 23

EE40: Introduction to Microelectronic Circuits

EE40: Introduction to Microelectronic Circuits. Summer 2004 Alessandro Pinto apinto@eecs.berkeley.edu. Staff. TAs Wei Mao maowei@eecs.berkeley.edu Renaldi Winoto winoto@eecs.berkeley.edu Reader Haryanto Kurniawan haryanto@uclink.berkeley.edu. Course Material. Main reference

louis
Télécharger la présentation

EE40: Introduction to Microelectronic Circuits

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EE40: Introduction to Microelectronic Circuits Summer 2004 Alessandro Pinto apinto@eecs.berkeley.edu

  2. Staff • TAs • Wei Maomaowei@eecs.berkeley.edu • Renaldi Winotowinoto@eecs.berkeley.edu • Reader • Haryanto Kurniawanharyanto@uclink.berkeley.edu Alessandro Pinto, EE40 Summer 2004

  3. Course Material • Main reference • http://www-inst.eecs.berkeley.edu/~ee40 • Textbook (s) • Electrical Engineering Principles and Applications by Allan R. Hambley. • Reader available at Copy Central, 2483 Hearst Avenue • Publications • Selected pubs posted on the web Alessandro Pinto, EE40 Summer 2004

  4. Course Organization • Lectures: 3 x week (20 total) • Labs • Experimenting and verifying • Building a complete system: mixer, tone control, amplifier, power supply, control • Discussion sessions • More examples, exercise, exams preparation • Homework • Weekly, for a better understanding • Exams • 2 midterms, 1 final • Grade • HW: 10%, LAB: 10%, MID: 20%, FINAL: 40% Alessandro Pinto, EE40 Summer 2004

  5. Table of contents • Circuit components • Resistor, Dependent sources, Operational amplifier • Circuit Analysis • Node, Loop/Mesh, Equivalent circuits • First order circuit • Active devices • CMOS transistor • Digital Circuits • Logic gates, Boolean algebra • Gates design • Minimization • Extra Topics CAD for electronic circuits Alessandro Pinto, EE40 Summer 2004

  6. Prerequisites • Math 1B • Physics 7B Alessandro Pinto, EE40 Summer 2004

  7. Lecture 1 • Illustrates the historical background • Electricity • Transistor • Monolithic integration • Moore’s law • Introduces signals: Analog and Digital Alessandro Pinto, EE40 Summer 2004

  8. History of EE: Electricity Hans Christian Oersted’s Experiment (1820) Michael Faraday’s Experiment (1831) (Source: Molecular Expression) Maxwell’s Equations (1831) Alessandro Pinto, EE40 Summer 2004

  9. History of EE: Transistor Collector J. Bardeen,W. Brattain and W. Shockley, 1939-1947 Base Emitter BJT C MOSFET D B G E S Alessandro Pinto, EE40 Summer 2004

  10. History of EE: Integration Resistor Capacitor Inductor Diode Transistor Jack S. Kilby (1958) Monolithic (one piece) circuits: built form a silicon substrate Alessandro Pinto, EE40 Summer 2004

  11. Today’s Chips: Moore’s Law Gordon Moore, 1965 • Implications • Cost per device halves every 18 months • More transistors on the same area, more complex and powerful chips • Future chips are very hard to design!!! • Fabrication cost is becoming prohibitive Number of transistor per square inch doubles approximately every18 months Alessandro Pinto, EE40 Summer 2004

  12. Today’s Chips: An Example P4 2.4 Ghz, 1.5V, 131mm2 300mm wafer, 90nm 90nm transistor (Intel) Hair size (1024px) Alessandro Pinto, EE40 Summer 2004

  13. Signals: Analog vs. Digital g(t) f(t) t t Analog: Analogous to some physical quantity Digital: can be represented using a finite number of digits Alessandro Pinto, EE40 Summer 2004

  14. Example of Analog Signal • Properties: • Dynamic range: maxV – minV • Frequency: number of cycles in one second A (440Hz) piano key stroke Voltage (V) Time (s) Alessandro Pinto, EE40 Summer 2004

  15. Analog Circuits • It is an electronic subsystem which operates entirely on analog signals i(t) o(t) Amplifier o(t) = Ki(t) Alessandro Pinto, EE40 Summer 2004

  16. Digital Circuits • It is an electronic subsystem which operates entirely on numbers (using, for instance, binary representation) a sum 1-bit Adder b carry Alessandro Pinto, EE40 Summer 2004

  17. Encoding of Digital Signals +1.5 V 5 → 101 1 threshold +1.5 V noise margin 0 0 V 0 V +1.5 V • We use binary digits • Two values: {0 , 1} • Positional system • Encoded by two voltage levels • +1.5 V → 1 , 0 V → 0 Alessandro Pinto, EE40 Summer 2004

  18. Why Digital? • Digital signals are easy and cheap to store • Digital signals are insensible to noise • Boolean algebra can be used to represent, manipulate, minimize logic functions • Digital signal processing is easier and relatively less expensive than analog signal processing Alessandro Pinto, EE40 Summer 2004

  19. Digital Representation of Analog Signals • Problem: represent f(t) using a finite number of binary digits • Example: A key stroke using 6 bits • Only 64 possible values, hence not all values can be represented • Quantization error: due to finite number of digits • Time sampling: time is continuous but we want a finite sequence of numbers Alessandro Pinto, EE40 Summer 2004

  20. Digital Representation of Analog Signals Dynamic Range: [-30,30] V Precision: 5 V Sampling f(t) t t Quantization 1100 1011 0100 0101 0110 0001 0010 1001 1100 0100 0011 0010 0011 1011 1010 1001 1000 0111 Result 0110 0101 -5V 0100 -10V 0011 -15V 0010 -20V 0001 -25V 0000 -30V Alessandro Pinto, EE40 Summer 2004

  21. Digital Representation of Logic Functions • Boolean Algebra: • Variables can take values 0 or 1 (true or false) • Operators on variables: • a AND b a·b • a OR b a+b • NOT b b • Any logic expression can be built using these basic logic functions • Example: exclusive OR Alessandro Pinto, EE40 Summer 2004

  22. Full Adder Example a sum 1-bit Adder b carry Alessandro Pinto, EE40 Summer 2004

  23. Summary • Analog signals are representation of physical quantities • Digital signals are less sensible to noise than analog signals • Digital signals can represent analog signals with arbitrary precision (at the expense of digital circuit cost) • Boolean algebra is a powerful mathematical tool for manipulating digital circuits Alessandro Pinto, EE40 Summer 2004

More Related