150 likes | 239 Vues
Implementing a high-performance data processing unit using FPGA technology for the PANDA Experiment with high flexibility and efficiency.
E N D
An ATCA and FPGA-Based Data Processing Unit for PANDA Experiment H.XU, Z.-A. LIU,Q.WANG, D.JIN, Inst. High Energy Physics, Beijing, W. Kühn, J. Lang, S. Lange, M. Liu, II Physikalisches Institut, Univ. Giessen. RT2010, Lisbon May. 24 2010
Overview • Requirements for PANDA TDAQ • Interaction rates up to 30MHz • typical event sizes 4 - 20 kB. • data rates after front end preprocessing: 40GB/s - 200 GB/s • high flexibility and selectivity • Solution: • continuously sampling data acquisition • No „hardware triggers“ • Precision clock distribution system • Digital signal processing at FrontEnd level • Event selection in programmable processing units • Connection via high speed networks • PANDA Experiment at FAIR • High Rates • σ ~ 55 mb • 3x107 interactions/s • Micro Vertexing • Charged particle ID • – (e±,μ±,π±,p,…) • Tracking /TPC • EM. Calorimetry • (γ,π0,η) • Forward capabilities • (leading particles) • Sophisticated event selection Zhen'An LIU, IHEP/Beijing
Data Rates and Event Sizes Zhen'An LIU, IHEP/Beijing
Structure of PANDA TDAQ • TDAQ block diagram • General Purpose Data Processing Unit(GPDP) • Highly scalable to adapt to different performance and bandwidth requirements • Computing resources via FPGA: XILINX Virtex4 FX60 • Lots of buffer memory • Flexible I/O connectivity • GBit Ethernet • Optical links via MGT (RocketIO) • High performance backplane interconnection • XTCA compliant • ATCA full mesh backplane Zhen'An LIU, IHEP/Beijing
Basic Functions of GPDP: FPGA based Zhen'An LIU, IHEP/Beijing
Architecture and features of GPDP • High Performance Compute Power/resources: • 5 Virtex-4 FX60 FPGA • 10Gb DDR2 RAM (2G/FPGA) • ~32Gbps Bandwidth • 8x panel Optical Link • 13x RocketIO to backplane • 5x Gigabit Ethernet • 1x GBit Ethernet to backplane • 2 Embedded PowerPC in each FPGA for slow control • Real time Linux • XTCA compliant Zhen'An LIU, IHEP/Beijing
First Prototype FPGA #1-4 FPGA #O Optical Backplane Ethernet DDR2 sockets Zhen'An LIU, IHEP/Beijing
2nd version prototype • SFP pluggable • Mono RJ45 socket • Higher bandwidth /SFP+ • Front Pannel • Better LEDs Zhen'An LIU, IHEP/Beijing
New version under development • AMC for processor FPGA • More memory 4Gb/FPGA(total of 20Gb) • Clocks and controls • Clocks • Trigger • Control • Higher bandwidth • Full SFP+ Zhen'An LIU, IHEP/Beijing
IPMC • Daugter board • I2C bus • Monitoring • Temperature • Voltages • Power consumption Zhen'An LIU, IHEP/Beijing
Embedded System Architecture (FX60) Zhen'An LIU, IHEP/Beijing
Development setup Zhen'An LIU, IHEP/Beijing
Summary and Outlook • Status: • Continuous sampling DAQ, no hardware triggers, high level event selection • Universal building block: General Purpose Data Processor • 2 prototype versions built and production ready for PANDA • first algorithms have been implemented • demonstrator system (HADES@FAIR) • Single ATCA shelf replaces ~ 10 VME crates • Up to 13 CN + 1 CPU module • Implementation of DAQ and trigger algorithm firmware for: • HADES @ FAIR • Use as a prototype DAQ for PANDA detector tests Zhen'An LIU, IHEP/Beijing
Summary and Outlook(2) • Further development • XTCA compliant • 20 GB memory • Clock and controls • Belle II PXD application • 2010/11 Algorithm development for PANDA • 2012-14 Construction and commissioning of PANDA DAQ Zhen'An LIU, IHEP/Beijing
Much Thanks for Your Attention! Zhen'An LIU, IHEP/Beijing