1 / 38

A u g m e n t e d R e a l i t y

A u g m e n t e d R e a l i t y. A Literature Review. By, The Group ( W ise E ducators I ncreasing R eality D ramatically) Joe Crouchman, Marty Felesena, Tamara Henry, Sharon Morris, Steve Rego. WEIRD. What is V irtual R eality or VR ???.

lydia
Télécharger la présentation

A u g m e n t e d R e a l i t y

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Augmented Reality A Literature Review By, The Group (Wise Educators Increasing Reality Dramatically) Joe Crouchman, Marty Felesena, Tamara Henry, Sharon Morris, Steve Rego WEIRD

  2. What is Virtual Reality or VR??? • Computer-simulated environments that can simulate physical presence in places in the real world, as well as in imaginary worlds.Virtual reality replaces the real world with a simulated one. What is Augmented Reality or AR??? A live direct or indirect view of a physical, real-world environment whose elements are augmented by computer-generated sensory input, such as sound or graphics or GPS. As a result, the technology functions by enhancing one’s current perception of reality.

  3. THE PAST…

  4. History of AR • Began in 1957 by Morton Heilig • Cinematographer who added visuals, sound, vibration, and smell to movies • 1966 – First Head-Mounted Display (HMD) – Ivan Sutherland • 1975 – Videoplace virtual object interaction – Myron Krueger • 1977 – Star Wars AR in Star Wars in 1977 • 1990 - Thomas Caudell of Boeing Corporation coined the phrase AR • 1992 – First functional AR system (Virtual Fixtures) created (L.B. Rosenberg) • 1994 – First AR theater production, Dancing in Cyberspace • 1998 – AR first introduced in education (University of North Carolina) • 2000 – First mobile AR game, ARQuake – Bruce Thomas • 2008 – AR travel guide launched • 2009 – AR Toolkit brought AR to the web browser • 2011 – AR apps available for mobile devices

  5. THE PRESENT…

  6. Augmented Reality • AR Field Trips • Participatory Simulations • Digital Object Manipulation • Social Interaction in Distance Learning • Student Engagement

  7. Familiar Examples of AR • NFL Yellow First-Down Line • NHL Hockey Puck Tracer • Heads-Up Display in Vehicles • First-Person Video Games • Nintendo Wii Interface

  8. Not-So-Familiar Examples of AR Lego AR (2008) Smart Grid (2009) • iPad AR (2011) Star Wars AR: TIE Fighters Attack NYC (2011)

  9. AR Markers

  10. AR Field Trips Tamara Henry

  11. AR Field Trips • Field trips have been an important part of education for many years. Unfortunately, rising costs and falling revenues have caused many schools to eliminate “extra” expenditures, such as field trips. • (Klemm, & Tuthill, 2003) Tamara Henry

  12. Using AR, schools can either boost the educational value of actual field trips or provide a digital alternative when an authentic field trip is not possible. • AR provides the opportunity for students to be immersed in the learning experience from within a culturally-relevant perspective. This makes learning educationally and personally relevant to the student. • (Blase, 2007) Tamara Henry

  13. AR provides the opportunity for narrative mapping, where events that have occurred over time are shown in a way that examines how the occurrences overlap and influence one another. For example, the shifting battlefronts at Gettysburg can be displayed in a way that shows the interaction among the troops. • Because AR is computer and technologically-driven, it is possible to explore places that are inaccessible to students, such as locations in space or on the ocean floor. • (Kitalong, Moody, Middlebrook, & Ancheta, 2009) Tamara Henry

  14. Participatory Simulations • Real-life environment • Practical skills can be mastered • Mistakes can be made • Sounds can be created • Algorithms can be managed • Direct patient to provider interaction Joseph A. Crouchman

  15. Medical Education Simulations • Cardiac Arrest • Chest pain • Respiratory distress • Shock trauma • Diabetic emergencies • Stroke Joseph A. Crouchman

  16. Medical Education Simulations • Blood pressure • Pulse • EKG • Respiratory rate • Lung sounds • Oxygen saturation Joseph A. Crouchman

  17. Medical Education Simulations • Patient interview • IV skills • Needle chest decompression • Needle cricothyrotomy • Intubation • Defibrillation/Cardioversion/Pacing Joseph A. Crouchman

  18. Medical School Simulation Realistic scenarios True 3D structure Assess, interact, and perform More efficient A smarter approach to learning The students love it! Wow factor.

  19. Digital Object Manipulation VIDEO • The use of augmented reality tools where virtual objects such as tables and graphs can be displayed and be interacted with in real scenes created from imaging devices. • This digital object manipulation has the potential to facilitate the opening up of new learning spaces within interdisciplinary core academic domains. • (Guven, 2003) Sharon Morris

  20. Academic Domains Include: • Basic science • Physics • Mathematics • Biology/physiology • Biomechanics • Sports science • Physical education Sharon Morris

  21. Chris Dede, professor at Harvard Graduate School of Education, on technology and education believes the greatest challenge facing educators is empowering students to master such 21st Century skills as “understanding and resolving complex, novel situations…producing knowledge by filtering and synthesizing information.” He asserts that immersive, situated learning such as augmented learning can effectively engage students in critical thinking to prepare them for the future. • (Thatcher, 2005) Sharon Morris

  22. Augmented Reality by Hitlab • HITLAB VIDEO Sharon Morris

  23. A national initiative in Singapore, funded by the national Research foundation has made the development of such tools affordable and mobile so that they can be used to scaffold learning. • A.R. technology tools can facilitate inquiry-based experiential and authentic learning in mainstream schools. • (Ong, 2010) Sharon Morris

  24. Most of the research shows that the virtual learning environment help to achieve higher learning results. The analysis of the research data shows that pupils’ achievement after use of ARTP (Augmented Reality Technology) significantly improved while completing some tasks. • (Vilkoniene, 2009) • http://www.youtube.com/watch?feature=player_detailpage&v=ukrDPyPPYnE Sharon Morris

  25. Social Interaction in Distance Learning Augmented Learning Environments • “One of the most important purposes of an educational environment is to promote social interaction among users located in the same physical space.”(Kaufmann, 2003, p. 1) • “Due to advances in pedagogical concepts, technology, and a simultaneous decline in hardware costs, the use of small-scale AR systems could become feasible for educational institutions within this decade.” (Kaufmann, 2003, p. 4) • Challenges within augmented learning environments (SL) include: understanding oneself, preparing students, proper technology, developing instructional components, and creating a safe, predator-free environment. (O’Connor & Sakshaug, 2009) Marty Felesena

  26. Group Awareness Tools • “Group awareness…is the knowledge and perception of who is there, where other persons are located, where they are looking, and what they are doing.” (Buder& Bodemer, 2008, p. 124) • Buder’s & Bodemer’s experimental study showed that, “groups using an augmented group awareness tool showed higher performance in terms of group decision and individual correctness than unsupported groups.” (Buder & Bodemer, 2008, p. 135) Marty Felesena

  27. Augmented Lectures • Allows for rich, private communication between the teacher and student without the rest of the classroom noticing the communication. (Zarraonandia, et al., 2011) Tangible Augmented Reality (TAR) The 3-D virtualization of objects that can be collaborated and manipulated by teachers and students in a shared AR environment. This allows the remotely located student to interactively and collaboratively participate in the AR-based study environment and acquire knowledge in a natural and intuitive manner. (Li, 2010) Marty Felesena

  28. 3-D Live & AR Magic Land • 3-D Live and Magic Land are technologies for capturing a person and, at the same time, displaying his/her 3-D images in a mixed-reality environment in real time. • Reasons for AR technology in distance education: • Support of seamless interaction between real and virtual environments • Use of a tangible interface metaphor for object manipulation • Ability to switch smoothly between reality and virtuality • Interactivity…promises physical and sensor, in addition to mental, activity and response. • (Liu, et al., 2009) Marty Felesena

  29. AR MagicMeeting (3-D Collaboration) • The MagicMeeting system presented is a collaborative AR system designed to support a scenario where a group of people meet to discuss the design of a product. • MagicMeeting is looking to replace the HMD-based approach with a projection-based system. • (Regenbrecht, Wagner, & Baratoff, 2002) Marty Felesena

  30. One concerned parent… Student Engagement • “I can’t believe you let students access the Internet without even talking to us parents about it. I don’t see why they need to be online. We didn’t have these things when we were in school and we got a good education. Kids are just wasting their time online on websites like MySpace and schools are doing nothing about it. How about you use the taxpayer money you waste on expensive computers to fix up the schools or pay the teachers more?” • Reeve (2011) Steve Rego

  31. Engaging Augmented Reality is… • NASA • Next Generation Air Traffic Control Systems • Medicine • Engineering • Research Steve Rego

  32. Results of Engaging AR • Learners find AR… • -Interesting • -Participating • -Skill practicing • -Skill building • -Challenging • -Responsive • Educators find AR… • Experiential • Authentic • Critical thinking • Higher learning • Achievement • Measurable Steve Rego

  33. Challenges to AR Engagement NASA’s experience: • Understanding AR • Designing AR • Integrating AR • Software • Hardware • Assessment Ideas Needs Steve Rego

  34. One you can try… • Can you care for a pet? • Can you make decisions? • You see the results! • Diabetic Dog Game • http://nobelprize.org/educational/medicine/insulin/game/insulin.html Steve Rego

  35. THE FUTURE… ???

  36. AR in Education • What Does This All Mean for Education??? • According to the 2011 Horizon Report, simple augmented reality will be ready for educational adoption in 2-3 years. • Challenges Include: • Technology Needs ($$$) • Learning Curves (Time and commitment) • Pedagogical Implementation (Creativity) • Research (Will it affect student achievement?)

  37. ARwill impact education!!! Ready or Not… Questions???

More Related