630 likes | 1.01k Vues
Vaccines. Successes of the Past Possibilities for the Future. Vaccines. Immunity to viral infections usually depends on the development of an immune response to Antigens on the virus surface Antigens on the virus-infected cell
E N D
Vaccines • Successes of the Past • Possibilities for the Future
Vaccines • Immunity to viral infections usually depends on the development of an immune response to • Antigens on the virus surface • Antigens on the virus-infected cell • In most cases response to internal proteins has little effect on humoral immunity to infection • Humoral antibodies can be important diagnostically (HIV)
Vaccines • Minor role for internal proteins can be seen in influenza pandemics • New flu viral strain contains a novel glycoprotein • Pandemic virus contains internal proteins to which the population has already been exposed • Nevertheless the CTL response to internal proteins is important Surface glycoprotein = protective immunogen which must be identified for a logical vaccine
Vaccines • Some viruses have more than one surface protein • Influenza (Orthomyxovirus) • Hemagglutinin - attaches virus to cell receptor • Neuraminidase - involved in release of virus from cell • Hemagglutinin is major target: stimulates neutralizing antibody
Vaccines • Neutralization may result from: • Binding of antibody to site on virus surface - block interaction with receptor • Aggregation of virus by polyvalent antibody • Complement-mediated lysis
Vaccines Addition points to note: Site in body at which virus replicates Three major sites for viral replication
Three major sites for viral replication • Mucosal surfaces of respiratory tract and GI tract. Rhino; myxo; corona; parainfluenza; respiratory syncytial; rota • Infection at mucosal surfaces followed by spread systemically via blood and/or neurones to target organs: picorna; measles; mumps; HSV; varicella; hepatitis A and B • Direct infection of blood stream via needle or bites and then spread to target organs: hepatitis B; alpha; flavi; bunya; rhabdo Local immunity via IgA very important in 1 and 2.
There is little point in having a good neutralizing humoral antibody in the circulation when the virus replicates, for example, in the upper respiratory tract. Clearly, here secreted antibodies are important. Although in the case of influenza serum antibodies may be important
Vaccines - Problems • Different viruses may cause similar disease--e.g. common cold • Antigenic drift and shift -- especially true of RNA viruses and those with segmented genomes • Shift: reassortment of segmented genomes (‘flu A but not rota or ‘flu B) • Drift: rapid mutation - retroviruses • Large animal reservoirs - Reinfection may occur
Vaccines - Problems • Integration of viral DNA. Vaccines will not work on latent virions unless they express antigens on cell surface. In addition, if vaccine virus integrates it may cause problems • Transmission from cell to cell via syncytia • Recombination of the virulent strain or of the vaccine virus
Mummies • China/India Crusaders • W Europe: fatality rate 25% • History changed: • Cortes • Louis XIV Smallpox
Variolation • 1% v. 25% mortality • Life-long immunity: No drift or shift (proof reading) • UK: 1700’s • China 1950 • Pakistan/Afghanistan/Ethiopia 1970 Smallpox
Vaccination • Jenner 1796 : Cowpox/Swinepox • 1800’s Compulsory childhood vaccination • 1930’s Last natural UK case • 1940’s last natural US case • 1958 WHO program • October 1977: Last case (Somalia) Smallpox
No animal reservoir • Lifelong immunity • Subclinical cases rare • Infectivity does not precede overt symptoms • One Variola serotype • Effective vaccine • Major commitment by governments Smallpox
Small RNA virus Some drift…but not too far as non-viable • US: Sabin attenuated vaccine ~ 10 cases vaccine-associated disease per year • 50% vaccinees feces • 50% contacts • Vaccine-associated cases: revertants • 1 in 4,000,000 vaccine infections paralytic polio • 1 in 100 of wt infections • Scandinavia: Salk dead vaccine • No gut immunity • Cannot wipe out wt virus Polio Vaccine
100 Inactivated (Salk) vaccine Cases per 100,000 population United States 10 Oral vaccine 1 Reported cases per 100000 population 0.1 0.01 0.001 1950 1960 1990 1970 1980
Total casesSweden and Finland 10000 Killed (Salk) vaccine 1000 Reported cases 100 10 1 0 1950 1955 1960 1965 1970 1975
Killed (Salk) Vaccine Live (Sabin) Vaccine Serum IgG 512 Serum IgG 128 32 Serum IgM Serum IgM Reciprocal virus antibody titer Nasal IgA Serum IgA 8 Serum IgA 2 Duodenal IgA Nasal and duodenal IgA 1 48 96 48 96 Vaccination Days Vaccination
Sabin Polio Vaccine • Attenuation by passage in foreign host • More suited to foreign environment and less suited to original host • Grows less well in original host • Polio: • Monkey kidney cells • Grows in epithelial cells • Does not grow in nerves • No paralysis • Local gut immunity (IgA) • Pasteur rabies vaccine also attenuated
Salk Polio Vaccine • Formaldehyde-fixed • No reversion
Polio Vaccine • Why use the Sabin vaccine?: • Local immunity: Vaccine virus just like natural infection • Stopping replication in G.I. Tract stops viral replication TOTALLY • Dead Salk vaccine virus has no effect on gut replication • No problem with selective inactivation • Greater cross reaction as vaccine virus also has antigenic drift • Life-long immunity
Polio Vaccine • New CDC Guidelines • Last US natural (non-vaccine associated) case was 15 years ago • 2 does injectable (Salk) vaccine • 2 doses oral • Vaccine cases 1 in 3 million does • New strategy will prevent about 5 of the 10 vaccine-associated cases (the five found in vaccinees) • Cost $20 million • Savings from eradication $230 million
New Recommendations To eliminate the risk for Vaccine-Associated Paralytic Poliomyelitis, the ACIP recommended an all-inactivated poliovirus vaccine (IPV) schedule for routine childhood polio vaccination in the United States. As of January 1, 2000, all children should receive four doses of IPV at ages 2 months, 4 months, 6-18 months, and 4-6 years.
Vaccines Advantages of Attenuated Vaccines I • Activates all phases of immune system. Can get humoral IgG and local IgA • Raises immune response to all protective antigens. Inactivation may alter antigenicity. • More durable immunity; more cross-reactive
Vaccines Advantages of Attenuated Vaccines II • Low cost • Quick immunity in majority of vaccinees • In case of polio and adeno vaccines, easy administration • Easy transport in field • Can lead to elimination of wild type virus from the community
Vaccines • Disadvantages of Live Attenuated Vaccine • Mutation; reversion to virulence (often frequent) • Spread to contacts of vaccinee who have not consented to be vaccinated (could also be an advantage in communities where vaccination is not 100%) • Spread vaccine not standardized--may be back-mutated • Poor "take" in tropics • Problem in immunodeficiency disease (may spread to these patients)
Vaccines • Advantages of inactivated vaccines • Gives sufficient humoral immunity if boosters given • No mutation or reversion • Can be used with immuno-deficient patients • Sometimes better in tropics • Disadvantages of inactivated vaccines • Many vaccinees do not raise immunity • Boosters needed • No local immunity (important) • Higher cost • Shortage of monkeys (polio) • Failure in inactivation and immunization with virulent virus
New Methods • Selection of attenuated virus strain • Varicella • Hepatitis A • Use monoclonal antibodies to select for virus with altered surface receptor • Rabies • Reo • Use mutagen and grow virus at 32 degrees. Selects for temperature-sensitive virus. Grows in upper respiratory tract but not lower • ‘flu (new vaccine) • respiratory syncytial virus
New Methods Recent ‘flu vaccine from Aviron Passage progressively at cold temperatures TS mutant in internal proteins Can be re-assorted to so that coat is the strain that is this years flu strain
X PB2 PB2 PB1 PB1 PA PA HA HA NA NA NP NP M M NS NS PB2 PB1 New Virulent Antigenic Variant Strain Attenuated Donor Master Strain PA HA NA NP Attenuated Vaccine Strain: Coat of Virulent strain with Virulence Characteristics of Attenuated Strain M NS
New Methods • Deletion mutants • Suppression unlikely (but caution in HIV) • Viable but growth restrictions • Problems • Oncogenicity in some cases (adeno, retro)
Recombinant DNA • Single gene (subunit) S-antigen mRNA Hepatitis B vaccine raised in yeast cDNA Express plasmid S-antigen mRNA protein New Methods
Single gene (subunit) - problems • Surface glycoprotein poorly soluble - deletion? • Poorly immunogenic • Post-translational modifications • Poor CTL response
Single gene (subunit) in expression vector • Vaccinate with live virus • Canary Pox • Infects human cells but does not replicate • Better presentation • CTL response • Vaccinia • Attenuated Polio • Being developed for anti-HIV vaccine
New Methods • Chemically synthesized peptide • malaria • poorly immunogenic
antibody New methods Anti-idiotype vaccine Virus epitope Antibody with epitope binding site
Anti-idiotypeantibody antibody Anti-idiotype vaccine cont Make antibody against antibody idiotype Anti-idiotype antibody mimics the epitope
Anti-idiotype antibody cont 2 Anti-idiotypeantibody Anti-anti-idiotypeantibody Anti-anti-idiotypeantibody Anti-anti-idiotypeantibody Use anti-idiotype antibody as injectable vaccine Use as vaccine Binds and neutralizes virus Antibody to anti-idiotype antibody
New Methods • New “Jennerian Vaccines” • Live vaccines derived from animal strains of similar viruses • Naturally attenuated for humans • Rotavirus: Monkey Rota • 80% effective in some human populations • Ineffective in others • Due to differences in circulating viral serotypes
New Methods • New Jennerian Vaccines • Bovine parainfluenza Type 3 • Bovine virus is: • Infectious to humans • Immunogenic (61% of children get good response) • Poorly transmissable • Phenotypicaly stable
Second Generation Jennerian Vaccines • Rotavirus • 11 segments of double strand RNA • Two encode: • VP4 (hemagglutinin) • VP7 (glycoprotein) • Co-infect tissue culture cells reassortment • 10 segments from monkey rotavirus • 1 segment outer capsid protein of each of four major rotavirus strains • Efficacy >80% Elicit neutralizing antibodies New Methods
Vaccines • 1796 Jenner: wild type animal-adapted virus • 1800’s Pasteur: Attenuated virus • 1996 DNA vaccines • The third vaccine revolution
DNA Vaccines Gene for antigen Muscle cell plasmid Muscle cell expresses protein - antibody made CTL response
DNA Vaccines • Plasmids are easily manufactured in large amounts • DNA is very stable • DNA resists temperature extremes so storage and transport are straight forward • DNA sequence can be changed easily in the laboratory. This means that we can respond to changes in the infectious agent • By using the plasmid in the vaccinee to code for antigen synthesis, the antigenic protein(s) that are produced are processed (post-translationally modified) in the same way as the proteins of the virus against which protection is to be produced. This makes a far better antigen than purifying that protein and using it as an immunogen.
DNA Vaccines • Mixtures of plasmids could be used that encode many protein fragments from a virus/viruses so that a broad spectrum vaccine could be produced • The plasmid does not replicate and encodes only the proteins of interest • No protein component so there will be no immune response against the vector itself • Because of the way the antigen is presented, there is a CTL response that may be directed against any antigen in the pathogen. A CTL response also offers protection against diseases caused by certain obligate intracellular pathogens (e.g. Mycobacterium tuberculosis)
DNA Vaccines • Possible Problems • Potential integration of plasmid into host genome leading to insertional mutagenesis • Induction of autoimmune responses (e.g. pathogenic anti-DNA antibodies) • Induction of immunologic tolerance (e.g. where the expression of the antigen in the host may lead to specific non-responsiveness to that antigen)
DNA Vaccines • DNA vaccines produce a situation that reproduces a virally-infected cell • Gives: • Broad based immune response • Long lasting CTL response • Advantage of new DNA vaccine for flu: • CTL response can be against internal protein • In mice a nucleoprotein DNA vaccine is effective against a range of viruses with different hemagglutinins
Towards an anti-HIV Vaccine • Questions: • For a vaccine what are the measures of protection? • Can we overcome polymorphism? • What are the key antigens? • Attenuated or killed or neither? • Mucosal immunity critical? • Prevent infection or prevent disease? • Animal models • How does HIV kill cells anyway?
What should vaccine elicit? Humoral response neutralizing antibody kill free virus Cellular response kill infected cells problem of cell-cell infection Towards an anti-HIV Vaccine
Early faith in neutralizing antibodies backed by chimpanzee experiments HIV high levels of neutralizing antibody Can resist subsequent challenge by virus injected I.V. !!!! But not via rectum or vagina But chimps do not get AIDS Towards an anti-HIV Vaccine