1 / 41

Chapter 13 Central Nervous System

Chapter 13 Central Nervous System. Coverings of the Brain and Spinal Cord. Two protective coverings: Outer covering is bone; cranial bones encase the brain, and vertebrae encase the spinal cord

mjuana
Télécharger la présentation

Chapter 13 Central Nervous System

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 13Central Nervous System

  2. Coverings of the Brain and Spinal Cord • Two protective coverings: • Outer covering is bone; cranial bones encase the brain, and vertebrae encase the spinal cord • Inner covering is the meninges; the meninges of the cord continue inside the spinal cavity beyond the end of the spinal cord

  3. Coverings of the Brain and Spinal Cord • Meninges—three membranous layers • Dura mater—strong, white fibrous tissue; outer layer of meninges and inner periosteum of the cranial bones; has three important extensions • Falxcerebri • Projects downward into the longitudinal fissure between the two cerebral hemispheres • Dural sinuses—function as veins, collecting blood from brain tissues for return to the heart • Superior sagittal sinus—one of several dural sinuses • Falxcerebelli—separates the two hemispheres of the cerebellum • Tentorium cerebelli—separates the cerebellum from the cerebrum • Arachnoid mater—delicate, cobwebby layer between the dura mater and pia mater

  4. Coverings of the Brain and Spinal Cord • Meninges—three membranous layers (cont.) • Pia mater—innermost, transparent layer; adheres to the outer surface of the brain and spinal cord; contains blood vessels; beyond the spinal cord, forms a slender filament called filum terminale; at level of sacrum, blends with dura mater to form a fibrous cord that disappears into the periosteum of the coccyx

  5. Coverings of the Brain and Spinal Cord • Several spaces exist between and around the meninges • Epidural space—located between the dura mater and inside the bony covering of the spinal cord; contains a supporting cushion of fat and other connective tissues (virtually absent around brain because dura is continuous with periosteum of bone) • Subdural space—located between the dura mater and arachnoid mater; contains lubricating serous fluid • Subarachnoid space—located between the arachnoid and pia mater; contains a significant amount of cerebrospinal fluid

  6. Cerebrospinal Fluid • Functions • Provides a supportive, protective cushion • Reservoir of circulating fluid, which is monitored by the brain to detect changes in the internal environment • Fluid spaces • Cerebrospinal fluid—found within the subarachnoid space around the brain and spinal cord and within the cavities and canals of the brain and spinal cord

  7. Cerebrospinal Fluid • Fluid spaces (cont.) • Ventricles—fluid-filled spaces within the brain; four ventricles within the brain • First and second ventricles (lateral)—one located in each hemisphere of the cerebrum • Third ventricle—thin, vertical pocket of fluid below and medial to the lateral ventricles • Fourth ventricle—tiny, diamond-shaped space where the cerebellum attaches to the back of the brainstem

  8. Cerebrospinal Fluid • Formation and circulation of cerebrospinal fluid (Figure 13-5) • Occurs by separation of fluid from blood in the choroid plexuses • Fluid from the lateral ventricles seeps through the interventricular foramen (of Monro) into the third ventricle • From the third ventricle, fluid goes through the cerebral aqueduct into the fourth ventricle

  9. Cerebrospinal Fluid • Formation and circulation of cerebrospinal fluid (cont.) • From the fourth ventricle, fluid goes to two different areas: • Some fluid flows directly into the central canal of the spinal cord • Some fluid leaves the fourth ventricle through openings in its roof into the cisterna magna, a space that is continuous with the subarachnoid space • Fluid circulates in the subarachnoid space and then is absorbed into venous blood through the arachnoid villi

  10. Spinal Cord • Structure of the spinal cord • Lies within the spinal cavity and extends from the foramen magnum to the lower border of the first lumbar vertebra • Oval cylinder that tapers slightly from above downward • Two bulges, one in the cervical region and one in the lumbar region • Anterior median fissure and posterior median sulcus are two deep grooves; anterior fissure is deeper and wider

  11. Spinal Cord • Functions of the spinal cord • Provides conduction routes to and from the brain • Ascending tracts—conduct impulses up the cord to the brain • Descending tracts—conduct impulses down the cord from the brain • Bundles of axons compose all tracts • Tracts are both structural and functional organizations of nerve fibers: • Structural—all axons of any one tract originate in the same structure and terminate in the same structure • Functional—all axons that compose one tract serve one general function

  12. The Brain • Structures of the brainstem (Figures 13-9 and 13-10) • Medulla oblongata • Lowest part of the brainstem • Part of the brain that attaches to spinal cord, located just above the foramen magnum

  13. The Brain • Structures of the brainstem (cont.) • Pons • Located above the medulla and below the midbrain • Midbrain • Located above the pons and below the cerebrum; forms the midsection of the brain

  14. The Brain • Functions of the brainstem • Performs sensory, motor, and reflex functions

  15. The Brain • Functions of the brainstem (cont.) • Nuclei in medulla—contain reflex centers • Of primary importance—cardiac, vasomotor, and respiratory centers • Nonvital reflexes—vomiting, coughing, sneezing, etc. • Pons—contains reflexes mediated by fifth, sixth, seventh, and eighth cranial nerves and pneumotaxic centers that help regulate respiration • Midbrain—contains centers for certain cranial nerve reflexes

  16. The Brain • Structure of the cerebellum • Second largest part of the brain—contains more neurons than the rest of the nervous system • Located just below the posterior portion of the cerebrum; transverse fissure separates these two parts of the brain • Gray matter makes up the cortex, and white matter predominates in the interior • Arbor vitae—internal white matter of the cerebellum; distinctive pattern similar to the veins of a leaf

  17. The Brain • Structure of the cerebellum (cont.) • Consists of the cerebellar hemispheres and the vermis • Internal white matter—composed of short and long tracts • Shorter tracts—conduct impulses from neuron cell bodies located in the cerebellar cortex to neurons whose dendrites and cell bodies compose nuclei located in the interior of the cerebellum • Longer tracts—conduct impulses to and from the cerebellum; fibers enter or leave by way of three pairs of peduncles • Dentate nuclei • Important pair of cerebellar nuclei, one of which is located in each hemisphere • Nuclei connected with thalamus and with motor areas of the cerebral cortex by tracts

  18. The Brain • Functions of the cerebellum • Cerebellum compares the motor commands of the cerebrum to the information coming from proprioceptors in the muscle; impulses travel from the cerebellum to both the cerebrum and muscles to coordinate movements to produce the intended action • General functions • Acts with cerebral cortex to produce skilled movements by coordinating the activities of groups of muscles • Controls skeletal muscles to maintain balance • Controls posture; operates at subconscious level to smooth movements and make movements efficient and coordinated • Processes sensory information; complements and assists various functions of the cerebrum

  19. The Brain • Diencephalon • Located between the cerebrum and the midbrain • Consists of several structures located around the third ventricle: thalamus, hypothalamus, optic chiasma, pineal gland, and several others • Thalamus • Dumbbell-shaped mass of gray matter made up of many nuclei • Each lateral mass forms one lateral wall of the third ventricle • Intermediate mass—extends through the third ventricle and joins the two lateral masses • Geniculate bodies—two of the most important groups of nuclei comprising the thalamus; located in posterior region of each lateral mass; play role in processing auditory and visual input

  20. The Brain • Thalamus (cont.) • Serves as a major relay station for sensory impulses on their way to the cerebral cortex • Performs the following primary functions: • Plays two parts in mechanism responsible for sensations: • Impulses produce conscious recognition of the crude, less critical sensations of pain, temperature, and touch • Neurons relay all kinds of sensory impulses, except possibly olfactory, to the cerebrum • Plays part in the mechanism responsible for emotions by associating sensory impulses with feeling of pleasantness and unpleasantness • Plays part in arousal mechanism • Plays part in mechanisms that produce complex reflex movements

  21. The Brain • Diencephalon (cont.) • Hypothalamus • Consists of several structures that lie beneath the thalamus • Forms floor of the third ventricle and lower part of lateral walls • Small but functionally important area of the brain, performs many functions of greatest importance for survival and enjoyment • Links mind and body • Links nervous system to endocrine system

  22. The Brain • Hypothalamus (cont.) • Summary of hypothalamic functions • Regulator and coordinator of autonomic activities • Major relay station between the cerebral cortex and lower autonomic centers; crucial part of the route by which emotions can express themselves in changed bodily functions • Synthesizes hormones secreted by posterior pituitary and plays an essential role in maintaining water balance • Some neurons function as endocrine glands • Plays crucial role in arousal mechanism • Crucial part of mechanism regulating appetite • Crucial part of mechanism maintaining normal body temperature

  23. The Brain • Diencephalon (cont.) • Pineal gland • Involved in regulating the body’s biological clock (Figure 13-14) • Produces melatonin as a “timekeeping hormone” • Melatonin is made from the neurotransmitter serotonin • Melatonin levels increase when sunlight is absent and decreases when sunlight is present, thus regulating the daily biological clock • Melatonin is the “sleep hormone”

  24. The Brain • Structure of the cerebrum • Cerebral cortex • Largest and uppermost division of the brain; consists of right and left cerebral hemispheres; each hemisphere is divided into five lobes : • Frontal lobe • Parietal lobe • Temporal lobe • Occipital lobe • Insula (island of Riel)

  25. The Brain • Cerebral cortex (cont.) • Cerebral cortex—outer surface made up of six layers of gray matter • Gyri—convolutions; some are named: precentral gyrus, postcentral gyrus, cingulate gyrus, and hippocampal gyrus • Sulci—shallow grooves

  26. The Brain • Cerebral cortex (cont.) • Fissures—deeper grooves, divide each cerebral hemisphere into lobes; four prominent cerebral fissures • Longitudinal fissure—deepest fissure; divides cerebrum into two hemispheres • Central sulcus (fissure of Rolando)—groove between frontal and parietal lobes • Lateral fissure (fissure of Sylvius) —groove between temporal lobe below and parietal lobes above; island of Reil lies deep in lateral fissure • Parietooccipital fissure—groove that separates occipital lobe from parietal lobes

  27. The Brain • Functions of the cerebral cortex • Functional areas of the cortex—certain areas of the cerebral cortex predominantly engage in one particular function • Postcentralgyrus—mainly general somatic sensory area; receives impulses from receptors activated by heat, cold, and touch stimuli • Precentralgyrus—chiefly somatic motor area; impulses from neurons in this area descend over motor tracts and stimulate skeletal muscles • Transverse gyrus—primary auditory area • Occipital lobe—primary visual areas

  28. The Brain • Functions of the cerebral cortex (cont.) • Sensory functions of the cortex • Somatic senses—sensations of touch, pressure, temperature, proprioception, and similar perceptions that require complex sensory organs • Cortex contains a “somatic sensory map” of the body • Information sent to primary sensory areas is relayed to sensory association areas, as well as to other parts of the brain • The sensory information is compared and evaluated, and the cortex integrates separate bits of information into whole perceptions

  29. The Brain • Motor functions of the cortex • For normal movements to occur, many parts of the nervous system must function • Precentral gyrus—primary somatic motor area; controls individual muscles • Secondary motor area—in the gyrus immediately anterior to the precentral gyrus; activates groups of muscles simultaneously

  30. The Brain • Integrative functions of the cortex • Consciousness State of awareness of one’s self, one’s environment, and other beings • Depends on excitation of cortical neurons by impulses conducted to them by the reticular activating system • There are two current concepts about the reticular activating system: • Functions as the arousal system for the cerebral cortex • Its functioning is crucial for maintaining consciousness • Language • Ability to speak and write words and ability to understand spoken and written words • Speech centers—areas in the frontal, parietal, and temporal lobes • Left cerebral hemisphere contains speech centers in approximately 90% of the population; in the remaining 10%, contained in either the right hemisphere or both • Aphasias—caused by lesions in speech centers

  31. The Brain • Integrative functions of the cortex (cont.) • Emotions • Subjective experiencing and objective expressing of emotions involve functioning of the limbic system • Limbic system—also known as the “emotional brain” • Most structures of limbic system lie on the medial surface of the cerebrum; they are the cingulate gyrus and the hippocampus • Have primary connections with other parts of the brain, such as thalamus, fornix, septal nuclei, amygdaloid nucleus, and hypothalamus • Memory • One of the major human mental activities • Cortex is capable of storing and retrieving both short- and long-term memory • Temporal, parietal, and occipital lobes are among the areas responsible for short- and long-term memory • Engrams—structural traces in the cerebral cortex that comprise long-term memories • Cerebrum’s limbic system plays a key role in memory

  32. The Brain • Hemisphericity—specialization of cerebral hemispheres • Right and left hemispheres of the cerebrum specialize in different functions; however, both sides of a normal person’s brain communicate with each other to accomplish complex functions • Left hemisphere is responsible for the following: • Language functions • Dominating control of certain hand movements • Right hemisphere is responsible for the following: • Perception of certain kinds of auditory material • Tactual perception • Perceiving and visualizing spatial relationships

  33. Cycle of Life: Central Nervous System • The development and degeneration of the central nervous system is the most obvious functional change over the life span • Development of the brain and spinal cord begins in the womb • Lack of development in the newborn is evidenced by lack of complex integrative functions • Language • Complex memory • Comprehension of spatial relationships • Complex motor skills

  34. Cycle of Life: Central Nervous System • Complex functions develop by adulthood • Late adulthood—tissues degenerate • Profound degeneration—unable to perform complex functions • Milder degeneration—temporary memory lapse or difficulty with complex motor tasks

  35. The Big Picture: The Central Nervous System and the Whole Body • Central nervous system—ultimate regulator of the body; essential to survival • Able to integrate bits of information from all over the body, make sense of them, and make decisions

More Related