1 / 5

References

References. [Agarwal04] S. Agarwal, D. Roth. “Learning to detect objects in images via a sparse, part-based representation”. IEEE Trans. Pattern Analysis and Machine Intelligence, 26(11):1475-1490, 2004.

nevaeh
Télécharger la présentation

References

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. References [Agarwal04] S. Agarwal, D. Roth. “Learning to detect objects in images via a sparse, part-based representation”. IEEE Trans. Pattern Analysis and Machine Intelligence, 26(11):1475-1490, 2004. [Ballard81] D.H. Ballard, “Generalizing the Hough Transform to Detect Arbitrary Shapes”. Pattern Recognition, 13(2):111-122, 1981. [Bar-Hillel05] A. Bar-Hillel, T. Hertz, D. Weinshall. “Object class recognition by boosting a part based model”. In CVPR’05. [Belongie et al. 2001] S. Belongie, J. Malik, and J. Puzicha. “Matching Shapes”, in ICCV 2001. [Beis & Lowe] J. Beis & D. Lowe. “Shape indexing using approximate nearest-neighbour search in high-dimensional spaces”, in CVPR 1997. [Berg et al. 2005] A. Berg, T. Berg, and J. Malik. Shape Matching and Object Recognition using Low Distortion Correspondence. In CVPR 2005. [Borenstein02] E. Borenstein, S. Ullman. “Class-specic, top-down segmentation”. In ECCV’02. [Burl98] M. Burl, M. Weber, P. Perona. “A probabilistic approach to object recognition using local photometry and global geometry”. In ECCV’98. [Chum05] O. Chum, O, J. Matas. “Matching with PROSAC - Progressive Sample Consensus”. CVPR’05. [Crandall05] D. Crandall, P. Felzenszwalb, D. Huttenlocher. “Spatial priors for part-based recognition using statistical models. In CVPR’05. [Csurka04] G. Csurka, C. Bray, C. Dance, L. Fan. “Visual categorization with bags of keypoints”. In ECCV’04 Workshop on Statistical Learning in Computer Vision, Prague, 2004. [Dalal05] N. Dalal B. Triggs. “Histograms of oriented gradients for human detection”. In CVPR’05. [Dorko03] G. Dorko, C. Schmid, “Selection of Scale Invariant Parts for Object Class Recognition”. In ICCV’03. [Ess07] A. Ess, B. Leibe, L. Van Gool, “Depth and Appearance for Mobile Scene Analysis”, In ICCV’07. [Ess08] A. Ess, B. Leibe, K. Schindler, L. Van Gool, “A Mobile Vision System for Robust Multi-Person Tracking”, in CVPR’08. [Everingham06] M. Everingham et al. (34 authors), “The 2005 PASCAL Visual Object Class Challenge”. In Selected Proceedings of the 1st PASCAL Challenges Workshop, LNAI, Springer, 2006. [Everingham et al. 2006] M. Everingham, J. Sivic, and A. Zisserman. 'Hello! My name is... Buffy' - Automatic naming of characters in TV video. In BMVC 2006. [FeiFei03] L. Fei-Fei, R. Fergus, P. Perona. “A Bayesian approach to unsupervised one-shot learning of object categories”. In ICCV’03. 1 K. Grauman, B. Leibe K. Grauman, B. Leibe

  2. References (2) [Felzenszwalb05] P. Felzenszwalb, D. Hutenlocher. “Pictorial structures for object recognition”. International Journal of Computer Vision, 61:55-79, 2005. [Felzenszwalb08] P. Felzenszwalb, D. McAllester, D. Ramanan. “A Discriminatively Trained, Multi-Scale Deformable Part Model”, in CVPR’08. [Fergus03] R. Fergus, A. Zisserman, P. Perona. “Object class recognition by unsupervised scale-invariant learning”. In CVPR’03. [Fergus05] R. Fergus, P. Perona, A. Zisserman. “A sparse object category model for efficient learning and exhaustive recognition”. In CVPR’05. [Ferrari06] V. Ferrari, T. Tuytelaars, L. Van Gool. “Simultaneous Object Recognition and Segmentation from Single or Multiple Model Views”. International Journal of Computer Vision, 67(2):159-188, 2006. [Fischler73] M.A. Fischler, R.A. Elschlager. “The representation and matching of pictorial structures”. IEEE Transactions on Computer, 22(1):67-92, Jan. 1973. [Fleuret & Geman] F. Fleuret and D. Geman. “Coarse-to-fine face detection” In IJCV 2001. [Gavrila & Philomin] D. Gavrila and V. Philomin, “Real-time object detection for smart vehicle”, ICCV 1999. [Grauman & Darrell 2005] K. Grauman and T. Darrell. The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features. In ICCV 2005. [Grauman & Darrell 2006] K. Grauman and T. Darrell. Unsupervised Learning of Categories from Sets of Partially Matching Image Features. In CVPR 2006. [Harris98] C. J. Harris, M. Stephens. “A combined corner and edge detector”. In Proc. 4th Alvey Vision Conference, Manchester, 1988. [Hoiem05] D. Hoiem, A. Efros, M. Hebert. “Putting Objects into Perspective”, in CVPR’06. [Hoiem07] D. Hoiem, C. Rother, J. Winn, “3D LayoutCRF for Multi-View Object Class Recognition and Segmentation”, CVPR’07. [Hough62] P.V.C. Hough, “Method and Means for Recognizing Complex Patterns”. U.S. Patent 3069654, 1962. [Indyk & Motwani] P. Indyk and R. Motwani. “Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality”, in STOC, 1998. [Kadir01] T. Kadir, M. Brady. “Scale, saliency and image description”. International Journal of Computer Vision, 45(2):83-105, 2001. [Kumar05] M. P. Kumar, P. H. S. Torr, A. Zisserman. “Obj cut”. In CVPR’05. [Lazebnik et al. 2003] S. Lazebnik, C. SChmid, and J. Ponce. “Affine-Invariant Local Descriptors and Neighborhood Statistics for Texture Recognition”, In ICCV 2003. [Lazebnik et al. 2006] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In CVPR 2006. 2 K. Grauman, B. Leibe K. Grauman, B. Leibe

  3. References (3) [Leibe05] B. Leibe, E. Seemann, B. Schiele, “Pedestrian Detection in Crowded Scenes”, CVPR’05. [Leibe06a] B. Leibe, K. Mikolajczyk, B. Schiele, “Efficient Clustering and Matching for Object Class Recognition”, In BMVC’06. [Leibe06b] B. Leibe, K. Mikolajczyk, B. Schiele, “Segmentation Based Multi-Cue Integration for Object Detection”, In BMVC’06. [Leibe07a] B. Leibe, N. Cornelis, K. Cornelis, L. Van Gool, “Dynamic 3D Scene Analysis from a Moving Vehicle”. In CVPR’07. [Leibe07b] B. Leibe, K. Schindler, L. Van Gool, “Coupled Detection and Trajectory Estimation for Multi-Object Tracking”. In ICCV’07. [Leibe08] B. Leibe, A. Leonardis, B. Schiele, “Robust Object Detection with Interleaved Categorization and Segmentation”, in International Journal of Computer Vision, ??(1-3), 2008. [Leordeanu & Hebert] M. Leordeanu and M. Hebert. A Spectral Technique for Correspondence Problems using Pairwise Constraints. In ICCV 2005. [Leonardis95] A. Leonardis, A. Gupta, R. Bajcsy, “Segmentation of Range Images as the Search for Geometric Parametric Models”. International Journal of Computer Vision, 14:253-277, 1995. [Leung & Malik] T. Leung & J. Malik. “Recognizing surfaces using three dimensional textons” In ICCV 1999. [Lindeberg98] T. Lindeberg. “Feature detection with automatic scale selection”. International Journal ofComputer Vision, 30(2):77-116, 1998. [Lowe99] D. Lowe. “Object recognition from local scale-invariant features”. In ICCV’99. [Lowe01] D. Lowe. “Local feature view clustering for 3D object recognition”. In CVPR’01. [Lowe04] D. Lowe. “Distinctive image features from scale-invariant keypoints”. International Journal of Computer Vision, 60(2):91-110, 2004. [Matas02] J. Matas, O. Chum, M. Urban, T. Pajdla. “Robust Wide Baseline Stereo from Maximally Stable Extremal Regions”. BMVC 2002. [Mikolajczyk01] K. Mikolajczyk, C. Schmid. “Indexing based on Scale Invariant Interest Points”. In ICCV’01. [Mikolajczyk04] K. Mikolajczyk, C. Schmid. “Scale and affine invariant interest point detectors”. International Journal of Computer Vision, 1(60):63–86, 2004. 3 K. Grauman, B. Leibe K. Grauman, B. Leibe

  4. References (4) [Mikolajczyk05] K. Mikolajczyk, C. Schmid. “A Performance Evaluation of Local Descriptors”. IEEE Trans. PAMI, Vol. 27(10), 2005. [Mikolajczyk06] K. Mikolajczyk, B. Leibe, B. Schiele, “Multiple Object Class Detection with a Generative Model”. In CVPR’06. [Mutch & Lowe] J. Mutch and D. Lowe. “Multiclass object recognition with sparse, localized features”, CVPR 2006. [Nister05] D. Nistér, “Preemptive RANSAC for Live Structure and Motion Estimation”, Machine Vision and Applications, 16(5):321–329, 2005. [Nister06] D. Nister, H. Stewenius. “Scalable Recognition with a Vocabulary Tree”. In CVPR’06. [Nowak et al.] E. Nowak, F. Jurie, and B. Triggs. Sampling Strategies for Bag-of-Features Image Classification. In ECCV 2006. [Obdrzalek02] S. Obdrzalek, J. Matas. “Object Recognition using Local Affine Frames on Distinguished Regions”, BMVC’02. [Rowley et al.] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. In IEEE Patt. Anal. Mach. Intell., volume 20, pp. 22–38, 1998. [Schmid96] C. Schmid, R. Mohr, “Combining Greyvalue Invariants with Local Constraints for Object Recognition”. In CVPR’96. [Seemann06] E. Seemann, B. Leibe, B. Schiele, “Multi-Aspect Detection of Articulated Objects”. In CVPR’06. [Serre et al. 2005] T. Serre, L. Wolf, and T. Poggio. “Object recognition with features inspired by visual cortex”, CVPR 2005. [Sivic03] J. Sivic, A. Zisserman. “Video Google: A text retrieval approach to object matching in videos”. In ICCV’03. [Sivic et al. 2005] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman. Discovering Objects and Their Location in Images. In ICCV 2005. [Sudderth05] E. Sudderth, A. Torralba, W. Freeman, A. Willsky. “Learning hierarchical models of scenes, objects, and parts”. In ICCV’05. [Thomas06] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, B. Schiele, and L. Van Gool. “Towards Multi-View Object Class Detection”, CVPR’06. [Turk & Pentland] M. Turk and A. Pentland. “Face Recognition Using Eigenfaces”, CVPR 1991. [Tuytelaars04] T.Tuytelaars, L. Van Gool. “Matching widely separated views based on affine invariant regions”. International Journal of Computer Vision, 1(59):61–85, 2004. [Varma & Zisserman] M. Varma and A. Zisserman. “Classifying images of materials: Achieving viewpoint and illumination independence”. In ECCV 2002. [Viola01] P. Viola, M. Jones. “Rapid object detection using a boosted cascade of simple features”. In CVPR’01. 4 K. Grauman, B. Leibe K. Grauman, B. Leibe

  5. References (5) [Wallraven et al. 2003] C. Wallraven, B. Caputo, A. Graf. Recognition with Local features: the kernel recipe. ICCV03. [Weber00] M. Weber, M. Welling, P. Perona. “Unsupervised learning of models for recognition”. In ECCV’00. [Winn05] J. Winn, N. Joijic. “Locus: Learning object classes with unsupervised segmentation”. In ICCV’05. [Yu03] S.X. Yu, J. Shi, “Object-specific Figure-Ground Segregation”. In CVPR’03. 5 K. Grauman, B. Leibe K. Grauman, B. Leibe

More Related