1 / 4

Bab 8 Pengujian Hipotesis Tentang Proporsi

Bab 8 Pengujian Hipotesis Tentang Proporsi. Pengujian Hipotesis tentang satu Proporsi Urutan yang perlu diperhatikan dalam pengujian hipotesis tentang satu Proporsi adalah sbb : I.Rumusan Hipotesis 1.Ho : p = po 2. Ho : p = po 3. Ho : p = po

nodin
Télécharger la présentation

Bab 8 Pengujian Hipotesis Tentang Proporsi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bab 8 PengujianHipotesisTentangProporsi PengujianHipotesistentangsatuProporsi Urutan yang perludiperhatikandalampengujianhipotesistentangsatuProporsiadalahsbb : I.RumusanHipotesis 1.Ho : p = po 2. Ho : p = po 3. Ho : p = po Ha : p > po Ha : p < po Ha : p ≠ po Cara perumusan 1 dan 2 disebutpengujiansatuarah masing2 disebutpengujiansatuarahatasdansatuarahbawah II.Tentukannilaiα = tingkatnyata ( significant level ) = probabilitasuntukmelakukankesalahanjenis I dancarinilai Zα atau Zα/2 daritabel Normal

  2. III.HitungZosebagaikriteriapengujian Zo= X – n.po /√n.po(1-po)→ dimana X = sampel dg karakteristiktertentu n = banyaknyaelemensampel(n>30) po = proporsi PengujianHipotesisperbedaanduaProporsi PerumusanHipotesisnyaadalahsebagaiberikut : Ho : p1- p2= 0 ( takadaperbedaanatausama ) Ha : p1- p2 > 0 ( adaperbedaan, p1 > p2 ) Ha : p1- p2< 0 ( adaperbedaan, p1 < p2 ) Ha : p1- p2≠ 0 (p1 tidaksamadengan p2 , atau p1berbeda p2 )

  3. a.Bila n> 30 ( sampelbesar ) { (X1/n1) – (X2/n2)} Zo = √{( X1+X2/n1+n2) {1-(X1+X2/n1+n2) ( 1/n1 + 1/n2) Dimana : X1 = X2 = sampel dg karakteristiktertentu PengujianHipotesisperbedaanlebihdariduaProporsi Dalamprsktek, pengujianHipotesisdapatmencangkuplebihdari duaproporsi. Misalnyapersentasesejenisbarang yang rusakdari 3 pabriksama/tidakberbeda, persentasependuduk yang setuju KB dari 4 desasamadsb. RumusanHipotesisnyaadalah : Ho : p1 = p2 = . . . . Pj = . . . = pk ( = p ) Ha : Tidaksemuanyasama ( paling sedikitadaduaygtaksama )

  4. UntukmengujiHipotesisbahwatakadaperbedaanantara Proporsidari K populasidenganalternatifadaperbedaan , maka Dipergunakanpengujian Kai – Kuadrat Kai nolkuadrat = ∑ ∑ ( nij – eij )2 / eij i=1 j=1 dk = k – 1 Dimana : nij = Banyaknyaelemendengankarakteristik I dan sampel j eij = (n.j) (ni.) / n ataueij = (ni.) (n.j) / n = frekuensiharapan

More Related