 Download Download Presentation EE202 Supplementary Materials for Self Study

# EE202 Supplementary Materials for Self Study

Télécharger la présentation ## EE202 Supplementary Materials for Self Study

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
##### Presentation Transcript

1. EE202 Supplementary Materialsfor Self Study Circuit Analysis Using Complex Impedance Passive Filters and Frequency Response

2. Acknowledgment Dr. Furlani and Dr. Liu for lecture slides Ms. Colleen Bailey for homework and solution of complex impedance Textbook: Nilsson & Riedel, “Electric Circuits,” 8th edition

3. Steady-State Circuit Response to Sinusoidal Excitation - Analysis Using Complex Impedance

4. Why Sinusoidal?US Power Grid 60Hz Sinusoidal

5. Household Power Line

6. Household Circuit Breaker Panel 240V Central Air 120V Lighting, Plugs, etc.

7. Single Frequency Sinusoidal Signal

8. Sinusoidal Signal Amplitude Peak-to-peak Root-mean-square Frequency Angular Frequency Period

9. Trigonometry Functions Appendix F

10. Other Periodic Waveforms Fundamental and Harmonics

11. Resistor Only Circuit I=V/R, i(t)=v(t)/R Instantaneous Response

13. Phase Shift Time Delay or Phase Angle: t / T *2 or *360-degree

14. Phasor – Complex Number Z Real(Z)+j Imag(Z) Y Imag(Z) tan-1(Y/X) X Real(Z) Reference

15. Complex Number

16. Phasor Solution of R-L Circuit

17. Observations Single Frequency for All Variables Phasor Solution of Diff Eq. Algebraic equation Extremely simple Phase Delay between variables Physical Measurements Real part of complex variables v = Real{V}; i = Real{I}

18. Resistor

19. Instantaneous Response

20. Inductor

21. Capacitor

22. Impedance in Series Complex Impedance Resistance, Reactance

24. Apply ZL=jL, ZC=1/j C Zab=90+j(160-40)=90+j120=sqrt(902+1202)exp{jtan-1(120/90)} =150  53.13 degree I=750  30 deg / 150  53.13 deg = 5  -23.13 deg=5exp(-j23.13o)

25. Impedance in Parallel Complex Admittance Conductance, Susceptance

27. Apply ZL=jL, ZC=1/j C Series: Use Z; Parallel: Use Y Y=0.2  36.87 deg; Z=5  -36.87 deg V=IZ=40  -36.87 deg

28. Kirchhoff’s Laws Same Current at a Node Addition of current vectors (phasors) Voltage Around a Loop or Mesh Summation of voltage vectors (phasors)

29. Delta-T Transformation

30. Example

31. Delta-T Transformation

32. Series, Parallel, Series

33. Another Delta-T Transformation

34. Thevenin and Norton Transformation

35. Thevenin Equivalent Circuit

36. Norton Equivalent Circuits

37. Voltage divider Vo=36.12-j18.84 (V)

38. Find VTh Vx=100-I*10, Vx=I*(120-j40)-10*Vx; solve Vx and I VTH=10Vx+I*120=784-j288 (V)

39. Find ZTh Calculate Ia Determine Vx Calculate Ib ZTh=VT/IT=91.2-j38.4 (Ohm)

40. Transformer Time differentiation replaced by  j

41. AC Sine Wave, Ideal Transformer Voltage and Current Power Conserved

42. Transformer • Power Applications • Convert voltage • vout=(N2/N1)  vin • Signal Applications • Impedance transformation • Xab=(N1/N2)2  XL • Match source impedance with load to maximize power delivered to load

43. Power Calculations

44. Frequency Response of Circuits • Analysis Over a Range of Frequencies • Amplifier Uniformity • Filter Characteristics • Low pass filter • High pass filter • Bandpass filter • Equalizer

45. RC Filters High Pass Low Pass