1 / 24

Neutrinos

Neutrinos. Beck Róbert Fizikus MSc II. ELTE TTK. Topics. Basic information about neutrinos Past experiments Neutrino oscillation Recent and future experiments. What is a neutrino ?. „ small neutral one ” in Italian Electrically neutral , elementary subatomic particle

odetta
Télécharger la présentation

Neutrinos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neutrinos Beck Róbert Fizikus MScII. ELTE TTK

  2. Topics • Basic informationaboutneutrinos • Pastexperiments • Neutrinooscillation • Recent and futureexperiments

  3. What is a neutrino? • „smallneutralone” in Italian • Electricallyneutral, elementarysubatomicparticle • Notyetmeasured, butnon-zeromass • Speedveryclosetospeed of light • Interactions: • Weakinteraction • Gravity (negligible)

  4. History of theneutrino • Existenceproposed: 1930, Pauli • Negativebetadecay • Detected: Cowan-Reines 1956 • Reactorproducedantineutrinos • Detectedγphotonsfrompositronannihilation (scintillator) • Detectedneutronswithcadmium • Crosssection:

  5. History of theneutrinotypes • 1962 Lederman, Schwartz, Steinberger: muonneutrino (AGS) • 1975 tauparticles, taudecayobserved – StarnfordLinearAcceleration Center • 2000 tauneutrino’sinteractiondirectlydetected (DONUT) • Muon and taudecay, inanalogytobetadecay • No interactionbetweentheseatfirst; SM: no mass

  6. Historicalneutrinoexperiments • Homestakeexperiment 1970-1994 • 1478 m underground (goldmine) • Raymond Davis, John Bahcall, UPenn • 380 m3 perchloroethylene • Heliumbubbledthroughtocollecttheradioactive argon • 1/3 of neutrinofluxpredictedfrom Sun model

  7. Historicalneutrinoexperiments • Kamiokande (1983-) • Cerenkov-detector • Hugearray (1000) of photomultipliertubes • Verygooddirectionaldetection • 3000 t of water • 1/2 of neutrinofluxpredictedfrom Sun model • Super-Kamiokande (1996-) • 50 000 t of water, 11 200 PMTs • Inner and outerdetectorlayers • Implosion of 6600 tubesin 2001

  8. Historicalneutrinoexperiments • Sudburyneutrinoobservatory (1999-2006) • Usesheavywater (1000 t) • Cerenkov-detectorwith 9600 PMTs • Also: neutron capture • Deuterium: 6 MeV gamma (smallcross sec.) • Lightwater: 2 MeV gamma (largecross sec.) • Neutralcurrentdetectionarray (NCD) • 3He filledstrings

  9. Historicalneutrinoexperiments • CC: νe • NC: νe, vμ, vτ • Homestake: CC, 1/3 flux • Kamiokande: CC + 1/6 NC, 1/2 flux • SNO: CC, CC + 1/6 NC, NC • Insidethe Sun: onlyνearecreated • Yet: allthreeflavoursarrivetoEarth

  10. Neutrinooscillation • Experimentallyprovedin 2001 by SNO • Neutrinotypes: threeflavours • Theycantransmuteintoeachotherwhilepropagatingthroughspace • Non-zeromass • Flavoreigenstates != masseigenstates • TheoryproposedbyPontecorvo (1957) • Quantitativelyby Maki, Nakagawa, and Sakata (1962); expandedbyPontecorvo (1967)

  11. Neutrinooscillation • Differenceinmass: mass-statephasespropagateatdifferentrates • Macroscopiccoherencelength • Pontecorvo-Maki-Nakagawa-Sakata lepton mixing matrix

  12. Neutrinooscillation • Pontecorvo-Maki-Nakagawa-Sakata lepton mixing matrix • Masseigenstatepropagation: planewave • Ultrarelativisticcase:

  13. Neutrinooscillation • 3 Θangles, 3 Δm mass-differences • δ, α1,2parametersunknown • Alsosign of Δm32 • Solar, atmospheric, reactor, beamneutrinooscillation • Differentenergies • Differentcircumstancessuitedformeasuringdifferentparameters • Mikheyev–Smirnov–Wolfensteineffect • Electronschangepropagationeigenstateenergylevelsduetoweakinteractions

  14. Otheropenquestions • What is withhelicity? • Onlyleft-handedneutrinos, right-handedantineutrinosobserved • Counterpartseitherveryheavy (seesaw), ordonottake part inweakinteraction (sterile) • Origin of mass • Majoranamass? • Higgs-fieldinteraction (shouldinvolvebothhandedparticles)?

  15. Recentneutrinoexperiments • OPERA - Oscillation Project with Emulsion-tRacking Apparatus (2008-) • CERN neutrinostoGranSasso project • Designedfordirectobservation of tauneutrinos • Beam (pulses) of muonneutrinos • Detector: 150 000 bricks of emulsionmaterial, interleavedwithscintillatorcounters and lead plates, followedby a magneticspectrometer • Real-timetagging of interestingbricks • 2010, 2012: tauevents

  16. Recent neutrino experiments • OPERA tau observations • To be continued, by Ági

  17. Neutrinosfasterthanthespeed of light? • High-precision GPS, atomicclocks • Proton pulse, detectedneutrinostimestamped • Allelectroniclatencies had to be takeninto account • Distance: geodesy, globalcoordinatesystem • Maximum likelihood fit of signalshapes • Loosefiberopticcable • Icarus, Borexino, LVD (, OPERA) GranSassodetectorsusingthe CNGS beamreportedneutrinospeedsconsistentwiththespeed of light

  18. Recent neutrino experiments • IceCube South Pole Neutrino Observatory • Location: Amundsen-Scott South Pole Station, Antarctica • Why there? • Interacting material (ice) already in place • Ice easy to drill into (unlike rock) – with specialized hot water drills • Detectors lowered into the holes • Better shielding from noise sources than anywhere else • Completed in 2010

  19. Recent neutrino experiments • IceCube South Pole Neutrino Observatory • Detectors: Digital Optical Modules, DOMs • 86 strings, 60 detectors per string • They detect Cherenkov radiation • Spacing, calibration: TeV energy neutrinos • Angular resolution < 2 degrees • Supplementary detectors • IceTop • Deep CoreLow-EnergyExtension (<100 GeV)

  20. Recent neutrino experiments • IceCube South Pole Neutrino Observatory • Detection targets • Electrons: contained within detector, no source direction -> energy studies only • Taus: double-bang to distinguish from e-, distance between DOMs -> PeV energy; none discovered • Muons: good sensitivity, source direction detection • Main source: cosmic rays, not muon-neutrinos, going downwards, rejected • Going upwards through the Earth: caused by muon-neutrinos • Generated by cosmic rays hitting the other side of the Earth • Astronomical sources

  21. Recent neutrino experiments • IceCube South Pole Neutrino Observatory • Experimental targets • Extraterrestrial high-energy neutrino point sources • Neutrino astronomy • Neutrino flux map of the northern hemisphere • Gamma ray burst-neutrino coincidence • Neutrino oscillation measurements • Measure the θ23 mixing angle of the PMNS matrix • WIMP dark matter annihilation in the Sun • Cosmic ray composition, energies • Difference between IceTop and IceCube events • Milky Way supernova rays vs black hole jets (higher E)

  22. Recent neutrino experiments • IceCube South Pole Neutrino Observatory • Results • Too few high-E neutrinos found – inconsistent with GRB fireball model, new background flux limit • Atmospheric muon neutrino into tau neutrino oscillation measurement at high energies (30 GeV, Deep Core) • No excess WIMP-related neutrino flux found, upper limit for the annihilation rate; in the Sun and the GC • No neutrino point sources found above noise fluctuation • Cosmic ray composition, energy spectrum • Other flux limits, experimental concept, background study articles

  23. Sources • Wikipedia • OPERA website • CNGS website • Fermilab website • IceCubewebsite • Dr. Csótó Attila: Fejezetek a mag- és részecskefizikából coursenotes • http://profmattstrassler.com • Othervariouswebpages

  24. Thankyouforyourattention!

More Related