1 / 10

A view of the sub-mJy radio population: The AGN component LOFAR perspectives

A view of the sub-mJy radio population: The AGN component LOFAR perspectives. INAF - ISTITUTO DI RADIOASTRONOMIA I. Prandoni – Sept. 2008. Isabella Prandoni (INAF-IRA, Italy).

orly
Télécharger la présentation

A view of the sub-mJy radio population: The AGN component LOFAR perspectives

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A view of the sub-mJy radio population: The AGN componentLOFAR perspectives INAF - ISTITUTO DI RADIOASTRONOMIA I. Prandoni – Sept. 2008 Isabella Prandoni (INAF-IRA, Italy)

  2. INAF - ISTITUTO DI RADIOASTRONOMIA I. Prandoni – Sept. 2008 EMERGENCE OF NEW POPULATION(S) I – Modelingthe sub-mJy population EXCESS @ S<1 mJy: To qualitatively reproduce counts: 1. SF galaxies 2. Classical RL-AGNs steep/flat or FRI/FRII Mainly steep FRI RGs [logP<24] 3. RQ-AGN(Jarvis & Rawlings 04) RScompact & steep (<<10 kpc) 22 < logP<24 em. line spectrum  Type 1/Type 2

  3. INAF - ISTITUTO DI RADIOASTRONOMIA I. Prandoni – Sept. 2008 II – Obs. properties of sub-mJy sources ATESP-DEEP1 Sample:115 RS with S>0.4 mJy in 1 sq. degr. • Radio Power Distribution:(DEEP1abc) • ETS 1023-25 W Hz-1 • Low-intermediate power AGNs • QSO  P < 1025-26 WHz-1 • RI-QSOs[RQ-QSOs: 22<logP<24] • LTS  2/3 P < 1024 W Hz-1 • Star-forming gals 64 % 14 % 19 % (Mignano,IP+ 08) • Sample largely dominated (78%) by AGN activity AGNs: mostly FRI-like (No evidence of RQ-AGNs)

  4. INAF - ISTITUTO DI RADIOASTRONOMIA I. Prandoni – Sept. 2008 • AGN • ETS • LTS/SB flat flat steep steep II – Flat spectrum ETS (Mignano, IP+ 08) Upper limits Double/Extended RS • In DEEP1abc: • 24/39 ETS are flat/inverted: • - P 5 GHz~ 1022-24 W Hz-1(+ ETS spectra) • - Typically compact(<10-20 kpc) (+ flat)  • ADAF - ADAF+jet systems?(local LLAGNs) eg. Falcke & Biermann 99 FRI larger & steep core-dominated FRI? [base-jet emission]  Multi-freq. (0.1 –100 GHz) high-res. radio obs. needed

  5. INAF - ISTITUTO DI RADIOASTRONOMIA I. Prandoni – Sept. 2008 pure ADAF candidates αhigh<0.2 Jet-dominated systems Jet+ADAF II – ETS: High frequency follow-up Flux-limited sub-set of 15 ATESP-DEEP1 ETS with S>0.6 mJy ATCA: Simultaneous Multi-freq. obs. [5, 8, 20 GHz] (14 in 2008 to be added) most RS consistent with jet dominated systems (α<0.2) Base jet componentsor Jet+ADAF (α>=0) systems 2 RS still consistent with pure ADAF systems (α>0.2) Prandoni, Ricci+ in prep [8 - 20 GHz] [1.4 - 5 GHz]

  6. INAF - ISTITUTO DI RADIOASTRONOMIA I. Prandoni – Sept. 2008 flat steep II – Radio-quiet AGNs in FLS • First Look Survey (FLS) • S>0.115 mJy • Multi-band information: • opt. Spectra  MMT Hectospec • MIR 24 mm  Spitzer MIPS • 1.4 GHz  VLA/WSRT • 0.61 GHz  GMRT •  MIR-Radio correlation: • q24=log(S24/S1.4)=0.83±0.31 •  Spectral index: a(1.4-0.61) • 3 RQ-AGN with • S(1.4 GHz) > 0.115 mJy • [area=1 sq. degr.] RQ AGNs RL AGNs SFGs RQ AGNs RL AGNs SFGs Prandoni, Morganti+ in prep

  7. INAF - ISTITUTO DI RADIOASTRONOMIA I. Prandoni – Sept. 2008 S>10 microJy 0 1 2 3 III – Benefits of LOFAR 1. Large FoV  Large deep samples to probe evolution of low-P AGNs  constraints to AGN models for P< 1024 W/Hz @ z<4 (RL-AGN + RQ-AGN component) 240 MHz:2 104 RS in PB [1.5 sq.deg.] @ 100-km LOFAR conf. limit of S>14 mJy Low frequencies  steep sources (RQ-AGN)  Radio spectra in poorly explored freq. range NB:Not only steep LLAGNs For flat AGNs LOFAR 240 MHz deep fields as faint as current VLA deep fields

  8. INAF - ISTITUTO DI RADIOASTRONOMIA I. Prandoni – Sept. 2008 III- Benefits of E-LOFAR • International bs increase resolution: • High spatial resolution important Max Freq. Angular Confusion Baseline resol. Limit (3s) (km) (MHz) (“) (Jy) 150 240 2.4 13 500 240 0.6 5 1000 240 0.3 1  separate SB and AGN NB: sub-arcsec resolution  AGN/SF morphology on kpc scales  embedded AGNs in SFGs(cfr. eMERLIN  0.15” @ 1.5 GHz)  Lower confusion limit(sensitivity limited surveys) Slim~1 Jyfactor 10 lower P @ same z

  9. INAF - ISTITUTO DI RADIOASTRONOMIA I. Prandoni – Sept. 2008 Summary • General agreement between obs. data and models (PLE/LDE) More quantitative LLAGN modeling larger deep radio samples (All-sky/degree scale LOFAR 240 MHz deep surveys) • At S>0.4 mJy & I<23.5 no evidence of a RQ-AGN component Probing the steep RQ-AGN component  deeper AGN surveys and/or lower frequency ( LOFAR) • (base-)Jet/Jet+ADAF scheme most plausible for compact flat-spectrum ETS Probing Accretion schemes Obs. Follow-up e.g. multi-freq./high-res. radio obs. over large freq. range (for low freq. range  E-LOFAR) [Slim100 mJy]

  10. INAF - ISTITUTO DI RADIOASTRONOMIA I. Prandoni – Sept. 2008

More Related