1 / 13

Temat piąty Jednorównaniowe modele zmienności

Temat piąty Jednorównaniowe modele zmienności. Analiza szeregów czasowych o wysokiej częstotliwości cechy analizy krótkookresowej podstawowy i uogólniony model ARCH testowanie efektu ARCH/GARCH niestandardowe modele ARCH (in mean, z asymetrią, EGARCH)

reeves
Télécharger la présentation

Temat piąty Jednorównaniowe modele zmienności

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Temat piąty Jednorównaniowe modele zmienności Analiza szeregów czasowych o wysokiej częstotliwości • cechy analizy krótkookresowej • podstawowy i uogólniony model ARCH • testowanie efektu ARCH/GARCH • niestandardowe modele ARCH (in mean, z asymetrią, EGARCH) • estymacja modeli GARCH, ocena jakości

  2. Cechy analizy krótkookresowej Do cech procesów losowych (najczęściej procesów finansowych) charakteryzujących się wysoką częstotliwością zaliczą się: naprzemienne występowanie okresów o zwiększonej fluktuacji i okresów niskiej zmienności zmiennej będącej przedmiotem zainteresowania skupiania wariancji w kolejnych jednostkach czasu, tj. dodatniej korelacji w dziedzinie zmienności zmiennej będącej przedmiotem zainteresowania, co przejawia się w wysokiej wariancji zmiennej powodowanej wzrostem tej wariancji w okresie poprzedzającym i analogicznie spadkiem wariancji na skutek niskiej wariancji w okresie poprzedzającym

  3. Podstawowy i uogólniony model ARCH Rodzaje nieliniowych procesów stochastycznych W nieliniowej analizie jednowymiarowych szeregów czasowych poszukuje się funkcji f wiążącej dany proces z ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie: (5.1) gdzie jest zmienna losową o średniej zero i jednostkowej wariancji Powyższa reprezentacja jest nieoperacynja, jest na tyle ogólna, że nie wiadomo jak dobierać postać funkcji f Najczęściej przyjmuje się, że nieliniowy proces ekonomiczny ma postać: (5.2) Procesy Yt wyrażone (5.1) z nieliniową funkcją g() nazywamy procesami nieliniowymi w warunkowej wartości średniej Procesy Yt wyrażone (5.2) z nieliniową funkcją h2() nazywamy procesami nieliniowymi w warunkowej wariancji Powyższa klasyfikacja ma sens gdyż:

  4. Podstawowy i uogólniony model ARCH Warunkowa wartość oczekiwana Yt może być zapisana: (5.3) funkcja g opisuje zmiany wartości średniej procesu Yt warunkowo względem informacji z przeszłości (zbiór Ωt-1 oznacza zbiór wszystkich informacji dostępnych do momentu t-1) Kwadrat funkcji h przedstawia zmiany warunkowej wariancji procesu Yt: (5.4) Do najbardziej znanych modeli nieliniowych w warunkowej wartości średniej należą: procesu dwuliniowe, nieliniowe procesy autoregresji i średniej ruchomej, autoregresyjne modele progowe, przełącznikowe i wygładonego przejścia, procesy autoregresyjne o losowych współczynnikach Znanymi procesami o zmiennej wariancji warunkowej są: procesy ARCH/GARCH oraz procesy zmienności stochastycznej

  5. Podstawowy i uogólniony model ARCH ~ Podstawowym modelem ARCH jest: (5.5) (5.6) gdzie xt jest wektorem zmiennych objaśniających (najczęściej opóźnionych zmiennych endogenicznych – postać modelu AR) β jest wektorem parametrów strukturalnych t jest składnikiem zakłócającym spełniającym warunek w celu zapewnienia dodatniości warunkowej wariancji zakłada się ponadto: 0>0 i i≥0 Warto zauważyć, że równanie (5.6) jest nieliniowe ze względu na zmienne, równanie to (tj. granica sumy q) wyznacza tzw. stopień modelu ARCH, mówimy o modelu ARCH(q) Model ARCH(q) opisuje poprawnie proces stacjonarny, lub inaczej model ARCH(q) generuje proces stacjonarny, jeśli spełniony jest warunek

  6. Podstawowy i uogólniony model ARCH Uogólnionym modelem ARCH, czyli modelem GARCH, jest: (5.7) (5.8) gdzie oznaczenia zmiennych i parametrów jak w równaniach (5.5) i (5.6) w celu zapewnienia dodatniości warunkowej wariancji zakłada się ponadto: 0>0 i i≥0 i i≥0 granice sumowania q i p wyznaczają stopień modelu GARCH, mówimy o modelu GARCH(q, p) stacjonarność procesu (tj. skończoność bezwarunkowej wariancji) opisanego modelem GARCH(q,p) jest zapewniona jeśli spełniony jest warunek

  7. Podstawowy i uogólniony model ARCH ~ W zastosowaniach finansowych wygodnie jest korzystać z tzw. reprezentacji równoważnej modelu GARCH Niech dany będzie proces vt taki że: (5.9) z formuły (5.8) wyrażającej warunkową wariancję w modelu GARCH wiemy, że ht należy zapisać: (5.10)

  8. Testowanie efektu ARCH/GARCH Testowanie efektu ARCH/GARCH jest ekwiwalentne, tj. istniejące testy nie pozwalają odróżnić obu procesów Wynik testu wskazujący na obecność omawianego efektu pozwala jedynie z określonym prawdopodobieństwem wnioskować o obecności ARCH lub GARCH, bez możliwości rozróżnienia Wnioskowanie o rzędach p i q procesów ARCH/GARCH odbywa się na podstawie miar pojemności informacyjnej Test Engle’a Jest to test „typu” mnożnika Lagrange’a, tzn. do testowania hipotezy zerowej niezbędna jest znajomość jedynie modelu z restrykcjami nałożonymi poprzez testowaną hipotezę Przypomnijmy, równaniem pomocniczym wariancji warunkowej w modelu ARCH (5.6) jest: Engle zaproponował postać modelu AR dla kwadratów reszt uzyskanych z relacji (5.5) jako dobre przybliżenie relacji (5.6), zatem szacowany (MNK, ML) model przyjmuje postać: (5.11)

  9. Testowanie efektu ARCH/GARCH Statystyka testowa LM ma rozkład graniczny o q stopniach swobody, wnioskowanie o odrzuceniu H0 lub braku podstaw do odrzucenia jest typowe (5.11) Jeśli efekt ARCH/GARCH nie występuje, tzn. nie występuje heteroskedastyczność wariancji warunkowej, wówczas w (5.11) wszystkie parametry i powinny zanikać, tak więc hipotezami są: Statystyką testową jest: gdzie R2 jest współczynnikiem determinacji wyznaczonym dla modelu (5.11)

  10. Testowanie efektu ARCH/GARCH wyznaczyć kwadraty reszt, , relacji (5.5) • statystyka (5.12) Boxa-Ljunga ma rozkład graniczny o q stopniach swobody Test McLeoda i Li W omawianym teście wykorzystuje się statystykę Boxa-Ljunga do weryfikacji hipotezy o braku autokorelacji kwadratów reszt relacji (5.5), zatem test przebiega następująco: oszacować relację (5.5) • obliczyć współczynniki autokorelacji (rzędu od 1 do q) kwadratów reszt uzyskanych w punkcie poprzednim (Uwaga! Nie zapomnieć o standaryzacji) obliczyć statystykę Boxa-Ljunga (5.12) wobec zastosowanej statystyki testowej, zestawem hipotez jest:

  11. Niestandardowe modele GARCH ~ Model GARCH in MEAN (GARCH-M) przyjmuje postać: (5.13) (5.14) GARCH-M stosowany jest do modelowania ryzyka (premii za ryzyko) Jeżeli ocena parametru λ jest dodatnia i parametr może zostać uznany za statystycznie istotny, wówczas wzrost wariancji warunkowej ht (czyli miary ryzyka) powoduje wzrost premii za ryzyko w postaci oczekiwanej stopy zwrotu z papieru (yt)

  12. Niestandardowe modele GARCH ~ ~ Model GARCH z asymetrią reakcji Asymetria reakcji na pakietowe zmiany zmienności zmiennej będącej przedmiotem zainteresowania (rt) może być przybliżona prostym modelem GARCH-M (5.15) (5.16) (5.17) Wówczas możliwe jest wyznaczenie vt jako: Warto zauważyć, że proces opisany przez (5.17) charakteryzuje się rozkładem normalnym standaryzowanym Można zaobserwować, że prawdziwa jest następująca nierówność: Czego konsekwencją jest:

  13. Niestandardowe modele GARCH ~ ~ Model E-GARCH W modelu EGARCH czyni się typowe założenia odnoszące się do równania opisującego zmienną będącą przedmiotem zainteresowania, czyli: (5.18) Funkcją warunkowej wariancji jest: (5.19) Powyższy model jest modelem typu wykładniczego Z definicji funkcji wykładniczej wynika, że zapewniona jest nieujemność wariancji warunkowej Asymetria reakcji powodowana jest iloczynem iδ1 przykładowo, jeżeli iδ1<0 wówczas wariancja warunkowa ht maleje w miarę wzrostu t-i i rośnie w przypadku spadku składnika zakłócającego, jednakże nieliniowy charakter reakcji wymusza różne stopnie reakcji

More Related