1.37k likes | 1.56k Vues
Chapter 19 : Recursion. Objectives. After studying this chapter you should understand the following: recursion, and the relationship between recursive and iterative algorithms; the design of the quick sort algorithm; indirect recursion; backtracking and the class of problems it solves;
E N D
Objectives • After studying this chapter you should understand the following: • recursion, and the relationship between recursive and iterative algorithms; • the design of the quick sort algorithm; • indirect recursion; • backtracking and the class of problems it solves; • object recursion and its class structure. NH-Chapter 19
Objectives • Also, you should be able to: • write simple recursive algorithms; • use backtracking in the solution to problems; • structure class definitions to use object recursion. NH-Chapter 19
Iterative Algorithms • Algorithm • Specifies a step in the solution process. • Step is iterated. • After each iteration, we are closer to solution. • Solution is reached after a finite number of iterations. NH-Chapter 19
Recursion • Algorithms • Solve a trivial, basic case of problem, • Solution to general case is reduced to one that is a step closer to basic case. NH-Chapter 19
Iteration v.s. Recursion • Reducing general case to a easier case roughly corresponds to a single iterative step. • Reaching base case stops recursion as exit condition stops iteration. NH-Chapter 19
Iteration v.s. Recursion • In an iterative solution • step toward solution until while condition is false. • explicitly drive repetition with a loop. • In a recursive solution, • reduce or “unwind” problem until base case. • write a solution for base case and for reduction step. NH-Chapter 19
Recursive solution form if ( trivial case ) solve directly else solve in terms of a slightly easier case NH-Chapter 19
Sorting a list • Trivial case • size of list is one or zero. • General case • Size of list is greater than 1. • Slightly easier problem • reduce general case to sort a list with one fewer element. NH-Chapter 19
Sorting a list if ( list is empty or has one element ) solution is easy: do nothing else sort the list, assuming a way of sorting a listwith one fewer element is available NH-Chapter 19
Recursive algorithm implementation • Trivial case • Solved directly. • General case • algorithm invokesitself to solve a slightly reduced case. • solution is built from solution of slightly reduced case. NH-Chapter 19
Recursive algorithm execution • Results in a chain of self-calls, • each a slightly easier problem to solve that previous. • Finally method is invoked with trivial case. NH-Chapter 19
Recursive algorithm correctness • Must guarantee that general case will eventually reduce to basic case. NH-Chapter 19
Example: Exponentiation public static int power (int number, int exponent) The specified number raised to the specified power. require:exponent >= 0 NH-Chapter 19
Exponentiation iterative solution public static int power (int number, int exponent) { int result = 1; int count = 0; while (count != exponent) { result = number * result; count = count + 1; } return result; } • Invariant: result equals number raised to the count power. • Exponent requirement to be >= 0 ensures iteration will terminate. NH-Chapter 19
Exponentiation recursive solution • Base cases: raise integer to the power 0. • General case: raise integer to the power n, n is an integer and n > 0. • Reduction step: raising a number to the power n-1. NH-Chapter 19
Exponentiation recursive solution • Compute number to the power n, assuming we have already computed number to the power n-1. • If we have numbern-1, • multiply this value by number to get numbern. • number n-1 is gotten by a self-call: power (number, n-1) NH-Chapter 19
Exponentiation recursive solution /** * The specified number raised to the specified power. * require: exponent >= 0 */ public static int power (int number, int exponent) { int result; if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; } NH-Chapter 19
Tracing recursion: invoking power(2,3) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 3 exponent result NH-Chapter 19
Tracing recursion : invoking power(2,3) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 3 exponent result NH-Chapter 19
Tracing recursion : invoking power(2,3) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 3 exponent result invoke NH-Chapter 19
Tracing recursion : invoking power(2,2) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 2 exponent result NH-Chapter 19
Tracing recursion : invoking power(2,2) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 2 exponent result NH-Chapter 19
Tracing recursion : invoking power(2,2) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 2 exponent result invoke NH-Chapter 19
Tracing recursion : invoking power(2,1) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 1 exponent result NH-Chapter 19
Tracing recursion : invoking power(2,1) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 1 exponent result NH-Chapter 19
Tracing recursion : invoking power(2,1) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 1 exponent result invoke NH-Chapter 19
Tracing recursion : invoking power(2,0) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 0 exponent result NH-Chapter 19
Tracing recursion : invoking power(2,0) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 0 exponent result 1 NH-Chapter 19
Tracing recursion : invoking power(2,0) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 0 exponent result 1 NH-Chapter 19
Tracing recursion:resuming power(2,1) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 1 exponent result Result of previous call 1 NH-Chapter 19
Tracing recursion :resuming power(2,1) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 1 exponent result 2 NH-Chapter 19
Tracing recursion :resuming power(2,1) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 1 exponent result 2 NH-Chapter 19
Tracing recursion :resuming power(2,2) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 2 exponent result Result of previous call 2 NH-Chapter 19
Tracing recursion :resuming power(2,2) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 2 exponent result 4 NH-Chapter 19
Tracing recursion :resuming power(2,2) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 2 exponent result 4 NH-Chapter 19
Tracing recursion :resuming power(2,3) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 3 exponent result Result of previous call 4 NH-Chapter 19
Tracing recursion :resuming power(2,3) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 3 exponent result 8 NH-Chapter 19
Tracing recursion :resuming power(2,3) if (exponent == 0) result = 1; else result = number * power(number,exponent-1); return result; number 2 3 exponent result 8 NH-Chapter 19
Finding the minimum element: Recursive version public int minFinalExam (List<Student> students) The lowest final exam grades of the specified Students. require:students.size() > 0 NH-Chapter 19
Finding the minimum element: Recursive version • Base case: find smallest on list containing one element. • General case: find smallest on list with n elements, where n > 1. • Reducing general case: find smallest on list with n-1 elements. NH-Chapter 19
Finding the minimum element: Recursive version • how to find smallest of n elements, assuming we know how to find smallest of n-1 elements. • Find smallest of the n-1 elements after first. • Find smallest of this and the first. NH-Chapter 19
Finding the minimum element: Recursive version private int minFinalExam (List<Student> students,int first) The lowest final exam grades of Students on the list with indexes greater than or equal to first. require: 0 <= first && first < students.size() public int minFinalExam (List<Student> students) { return minFinalExam(students,0); } NH-Chapter 19
Finding the minimum element: Recursive version private int minFinalExam (List<Student> students,int first) { int smallest; int gradeOfFirst = students.get(first).finalExam(); if (first == students.size()-1) { smallest = gradeOfFirst; // the base case else {// the general case: int minOfRest = minFinalExam(students,first+1); if (minOfRest < gradeOfFirst) smallest = minOfRest; else smallest = gradeOfFirst; } return smallest; } NH-Chapter 19
Selection sort: recursive version • Base cases: sort an empty list or with 1 element. • General case: sort a list containing n elements, n > 1. • Reducing general case: sort a list containing n-1 elements. NH-Chapter 19
Selection sort: recursive version • Find the smallest element and put it in first place. • Sort the remaining n-1 elements. • Note: sorting the remaining n-1 elements, refers to a segment of the list first remaining n-1 elements NH-Chapter 19
Selection sort: recursive version private static <Element> void selectionSort (List<Element>list,int first,Order<Element>order) { if (first < list.size()) { find the smallest element and put it first; sort the remaining n-1 elements } } NH-Chapter 19
Selection sort: recursive version private static <Element> void selectionSort (List<Element>list,int first,Order<Element>order) { if (first < list.size()) { int small = smallestOf(list,first,list.size()-1,order); interchange(list,first,small); selectionSort(list,first+1,order); } } NH-Chapter 19
Selection sort: recursive version public static <Element> void selectionSort ( List<Element>list,Order<Element>order){ selectionSort(list,0,order); } NH-Chapter 19
Towers of Hanoi • move stack of disks from starting peg to one of the other pegs. Disks are moved one at a time, and a disk can never be placed on top of a smaller one. NH-Chapter 19