250 likes | 384 Vues
This document provides essential information for EE 5340 Semiconductor Device Theory, led by Professor Ronald L. Carter at UTA. It includes links to course materials, assignment details, and ethics policies. Key topics covered involve the Kronig-Penney model, band structures of silicon, and the behavior of donor and acceptor impurities in semiconductors. Understanding these concepts is crucial for mastering semiconductor physics. Students are encouraged to stay updated with the latest course information through provided web pages.
E N D
EE 5340Semiconductor Device TheoryLecture 03 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc
Review the Following • R. L. Carter’s web page: • www.uta.edu/ronc/ • EE 5340 web page and syllabus. (Refresh all EE 5340 pages when downloading to assure the latest version.) All links at: • www.uta.edu/ronc/5340/syllabus.htm • University and College Ethics Policies • www.uta.edu/studentaffairs/conduct/ • Makeup lecture at noon Friday (1/28) in 108 Nedderman Hall. This will be available on the web.
First Assignment • Send e-mail to ronc@uta.edu • On the subject line, put “5340 e-mail” • In the body of message include • email address: ______________________ • Your Name*: _______________________ • Last four digits of your Student ID: _____ * Your name as it appears in the UTA Record - no more, no less
Second Assignment • Submit a signed copy of the document posted at www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf
Kronig-Penney Model A simple one-dimensional model of a crystalline solid • V = 0, 0 < x < a, the ionic region • V = Vo, a < x < (a + b) = L, between ions • V(x+nL) = V(x), n = 0, +1, +2, +3, …, representing the symmetry of the assemblage of ions and requiring that y(x+L) = y(x) exp(jkL), Bloch’s Thm
K-P Impulse Solution • Limiting case of Vo-> inf. and b -> 0, while a2b = 2P/a is finite • In this way a2b2 = 2Pb/a < 1, giving sinh(ab) ~ ab and cosh(ab) ~ 1 • The solution is expressed by P sin(ba)/(ba) + cos(ba) = cos(ka) • Allowed valued of LHS bounded by +1 • k = free electron wave # = 2p/l
Analogy: a nearly-free electr. model • Solutions can be displaced by ka = 2np • Allowed and forbidden energies • Infinite well approximation by replacing the free electron mass with an “effective” mass (noting E = p2/2m = h2k2/2m) of
Generalizationsand Conclusions • The symm. of the crystal struct. gives “allowed” and “forbidden” energies (sim to pass- and stop-band) • The curvature at band-edge (where k = (n+1)p) gives an “effective” mass.
Silicon BandStructure** • Indirect Bandgap • Curvature (hence m*) is function of direction and band. [100] is x-dir, [111] is cube diagonal • Eg = 1.17-aT2/(T+b) a = 4.73E-4 eV/K b = 636K
Generalizationsand Conclusions • The symm. of the crystal struct. gives “allowed” and “forbidden” energies (sim to pass- and stop-band) • The curvature at band-edge (where k = (n+1)p) gives an “effective” mass.
Analogy: a nearly-free electr. model • Solutions can be displaced by ka = 2np • Allowed and forbidden energies • Infinite well approximation by replacing the free electron mass with an “effective” mass (noting E = p2/2m = h2k2/2m) of
Silicon Covalent Bond (2D Repr) • Each Si atom has 4 nearest neighbors • Si atom: 4 valence elec and 4+ ion core • 8 bond sites / atom • All bond sites filled • Bonding electrons shared 50/50 _= Bonding electron
Si Energy BandStructure at 0 K • Every valence site is occupied by an electron • No electrons allowed in band gap • No electrons with enough energy to populate the conduction band
Si Bond ModelAbove Zero Kelvin • Enough therm energy ~kT(k=8.62E-5eV/K) to break some bonds • Free electron and broken bond separate • One electron for every “hole” (absent electron of broken bond)
Band Model forthermal carriers • Thermal energy ~kT generates electron-hole pairs • At 300K Eg(Si) = 1.124 eV >> kT = 25.86 meV, Nc = 2.8E19/cm3 > Nv = 1.04E19/cm3 >> ni = 1.45E10/cm3
Donor: cond. electr.due to phosphorous • P atom: 5 valence elec and 5+ ion core • 5th valence electr has no avail bond • Each extra free el, -q, has one +q ion • # P atoms = # free elect, so neutral • H atom-like orbits
Bohr model H atom-like orbits at donor • Electron (-q) rev. around proton (+q) • Coulomb force, F=q2/4peSieo,q=1.6E-19 Coul, eSi=11.7, eo=8.854E-14 Fd/cm • Quantization L = mvr = nh/2p • En= -(Z2m*q4)/[8(eoeSi)2h2n2] ~-40meV • rn= [n2(eoeSi)h2]/[Zpm*q2] ~ 2 nm for Z=1, m*~mo/2, n=1, ground state
Band Model fordonor electrons • Ionization energy of donor Ei = Ec-Ed ~ 40 meV • Since Ec-Ed ~ kT, all donors are ionized, so ND ~ n • Electron “freeze-out” when kT is too small
Acceptor: Holedue to boron • B atom: 3 valence elec and 3+ ion core • 4th bond site has no avail el (=> hole) • Each hole, adds --q, has one -q ion • #B atoms = #holes, so neutral • H atom-like orbits
Hole orbits andacceptor states • Similar to free electrons and donor sites, there are hole orbits at acceptor sites • The ionization energy of these states is EA - EV ~ 40 meV, so NA ~ p and there is a hole “freeze-out” at low temperatures
Impurity Levels in Si: EG = 1,124 meV • Phosphorous, P: EC - ED = 44 meV • Arsenic, As: EC - ED = 49 meV • Boron, B: EA - EV = 45 meV • Aluminum, Al: EA - EV = 57 meV • Gallium, Ga: EA - EV = 65meV • Gold, Au: EA - EV = 584 meV EC - ED = 774 meV
References • *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989. • **Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. • M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003.