1 / 37

Numbers count

Numbers count. ACCURATE ACCURATE NOT Accurate PRECISE NOT precise PRECISE. Random error systematic error. Required math skills:. Add Subtract Multiply Divide Powers Logarithms. Orders of magnitude Estimation Units Conversions Powers of 10 Prefixes Errors Statistics.

santa
Télécharger la présentation

Numbers count

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Numbers count

  2. ACCURATEACCURATENOT Accurate PRECISENOT precisePRECISE Random error systematic error

  3. Required math skills: • Add • Subtract • Multiply • Divide • Powers • Logarithms

  4. Orders of magnitude • Estimation • Units • Conversions • Powers of 10 • Prefixes • Errors • Statistics

  5. Estimation and orders of magnitude: How many piano tuners are there in Chicago?

  6. Estimation and orders of magnitude: What is the national debt?

  7. Estimation and orders of magnitude: What is the world population?

  8. Estimation and orders of magnitude: How many water molecules in 1000 droplets?

  9. Estimation and orders of magnitude: A cube – 1” on a side  (2.6)3 cm3 ~ 18 cc 18 cc = 18 cc (1 g/1 cc) = 18 g 18 g = 18 g (1 molecule/ (18 x 1.66x10-24 g)) = 6.022 x 1023 molecules

  10. Estimation and orders of magnitude: powers of 10

  11. Chemical concentrations Molarity = Moles of solute/Liters of Solution (M) Molality = Moles of solute/Kg of Solvent (m) Mole Fraction= Moles solute/total number of moles Mass % = Mass solute/total mass x 100 Volume % = volume solute/total volume x 100 ppm = parts per million * ppb = parts per billion * * mass for solutions, volume for gasses

  12. Chemical concentrations Molarity = Moles of solute/Liters of Solution (M) Molality = Moles of solute/Kg of Solvent (m) Mole Fraction= Moles solute/total number of moles Mass % = Mass solute/total mass x 100 Volume % = volume solute/total volume x 100 ppm = parts per million * ppb = parts per billion * * mass for solutions, volume for gasses

  13. Chemical concentrations Molarity = Moles of solute/Liters of Solution (M) Molality = Moles of solute/Kg of Solvent (m) Mole Fraction= Moles solute/total number of moles Mass % = Mass solute/total mass x 100 Volume % = volume solute/total volume x 100 ppm = parts per million * ppb = parts per billion * * mass for solutions, volume for gasses

  14. A sample of NaNO3 weighing 8.50 grams is placed in a 500. ml volumetric flask and distilled water was added to the mark on the neck of the flask. Calculate the Molarity of the resulting solution.

  15. A sample of NaNO3 weighing 8.50 grams is placed in a 500. ml volumetric flask and distilled water was added to the mark on the neck of the flask. Calculate the Molarity of the resulting solution. 1. Convert the given grams of solute to moles of solute : 2. Convert given ml of solution to liters 3. Apply the definition for Molarity: Molarity = moles NaNO3 / volume of the solution in liters

  16. Chemical concentrations Molarity = Moles of solute/Liters of Solution (M) Molality = Moles of solute/Kg of Solvent (m) Mole Fraction= Moles solute/total number of moles Mass % = Mass solute/total mass x 100 Volume % = volume solute/total volume x 100 ppm = parts per million * ppb = parts per billion * * mass for solutions, volume for gasses

  17. Determine the molality of 3000. grams of solution containing 37.3 grams of Potassium Chloride KCl. 1. Convert grams KCl to moles KCl 2. Determine the mass of pure solvent from the given grams of solution and solute

  18. Determine the molality of 3000. grams of solution containing 37.3 grams of Potassium Chloride KCl. 1. Convert grams KCl to moles KCl 2. Determine the mass of pure solvent from the given grams of solution and solute Total grams = 3000 grams = Mass of solute + Mass of solvent  Mass of pure solvent = (3000 - 37.3) gram = 2962.7 gram

  19. . 3. Convert grams of solvent to kilograms 4. Apply the definition for molality

  20. Chemical concentrations Molarity = Moles of solute/Liters of Solution (M) Molality = Moles of solute/Kg of Solvent (m) Mole Fraction = Moles solute/total number of moles Mass % = Mass solute/total mass x 100 Volume % = volume solute/total volume x 100 ppm = parts per million * ppb = parts per billion * * mass for solutions, volume for gasses

  21. Determine the mole fraction of KCl in 3000. grams of solution containing 37.3 grams of Potassium Chloride KCl. 1. Convert grams KCl to moles KCl 2. Determine the mass of pure solvent from the given grams of solution and solute Total grams = 3000 grams = Mass of solute + Mass of solvent  Mass of pure solvent = (3000 - 37.3) gram = 2962.7 gram

  22. 3. Convert grams of solvent H2O to mols 4. Apply the definition for mole fraction mole fraction =

  23. Chemical concentrations Molarity = Moles of solute/Liters of Solution (M) Molality = Moles of solute/Kg of Solvent (m) Mole Fraction= Moles solute/total number of moles Mass % = Mass solute/total mass x 100 Volume % = volume solute/total volume x 100 ppm = parts per million * ppb = parts per billion * * mass for solutions, volume for gasses

  24. Determine the mass % of a NaCl solution if 58.5 grams of NaCl was dissolved in 50 ml of water (assume the density of water to be 1 g/ml) 1. Convert ml of water to grams 2. Determine total mass of solution Mass of solution = mass of solute + mass of solvent = 58.5 + 50 = 108.5 g 3. Apply the definition of mass percent mass % = 58.5 (100) / 108.5 = 53.9% NaCl

  25. Chemical concentrations Molarity = Moles of solute/Liters of Solution (M) Molality = Moles of solute/Kg of Solvent (m) Mole Fraction= Moles solute/total number of moles Mass % = Mass solute/total mass x 100 Volume % = volume solute/total volume x 100 ppm = parts per million * ppb = parts per billion * * mass for solutions, volume for gasses

  26. Assuming the density of water to be 1 g/mL we approximate the density of a dilute aqueous solution to be 1 g/mL  1 ppm = 1 μg/mL = 1 mg/L  1 ppb = 1 ng/mL = 1 μg/L

  27. Determine the ppm of a NaCl solution if 58.5 grams of NaCl was dissolved in 50.0 ml of water (assume the density of water to be 1 g/ml) Convert ml of water to grams Determine total mass of solution Mass of solution = mass of solute + mass of solvent = 58.5 + 50.0 = 108.5 g Apply the definition of ppm 58.5 (106) / 108.5 = 5.39 x 105ppmNaCl

More Related