1 / 26

High-Speed High-Density Data Acquisition in Airborne Laser Scanning Applications

High-Speed High-Density Data Acquisition in Airborne Laser Scanning Applications. INTER GEO September 2011, Nürnberg Peter Rieger Andreas Ullrich RIEGL LMS GmbH. Contents: Range ambiguities in time-of-flight measurements Known measures in resolving or avoiding range ambiguities

sileas
Télécharger la présentation

High-Speed High-Density Data Acquisition in Airborne Laser Scanning Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High-Speed High-Density Data Acquisition in Airborne Laser Scanning Applications INTERGEO September 2011, Nürnberg Peter Rieger Andreas Ullrich RIEGL LMS GmbH www.riegl.com

  2. Contents: • Range ambiguities in time-of-flight measurements • Known measures in resolving or avoiding range ambiguities • Advantages and disadvantages • Introduction to RIEGL’s novel approach RIEGL Laser Measurement Systems www.riegl.com

  3. Airborne laser scanning is a rapid, highly accurate and efficient method of capturing 3D data of large areas. for planes: LMS-Q680i / LMS-Q560 • Multiple-Time-Around (MTA) Processing (LMS-Q680i) • Full Waveform Analysis for an unlimited number of target echoes • operating flight altitude up to 5,000 / 3,300 ft AGL • Laser PRR 400 / 240 kHz for helicopters: NEWRIEGL VQ-580 • optimized for glacier and snow measurements RIEGL VQ-480 / VQ-380 • echo digitization and Online Waveform Processing • multiple target capability • operating flight altitude up to 2,500 / 1,800 ft AGL www.riegl.com Airborne Laser Scanning

  4. Sm Sm+1 Amplitude En Tm Tn Tm+1 Time www.riegl.com Principle of time-of-flight measurements

  5. Definition of „Multiple-Time-Around“ from the “IEEE Standard Radar Definitions, IEEE Std 686-1997 (1998)”: www.riegl.com

  6. MTA Zone 1 Sm-3 Sm-2 Sm-1 Sm Sm+1 Amplitude En-1 En-3 En En-2 Tm-3 Tn-3 Tm-2 Tn-2 Tm-1 Tn-1 Tm Tn Tm+1 Time rm-3,MTA1 rm-2,MTA1 rm,MTA1 rm-1,MTA1 MTA Zone 1: www.riegl.com

  7. MTA Zone 2 Sm-3 Sm-2 Sm-1 Sm Sm+1 Amplitude En-1 En-3 En En-2 Tm-3 Tn-3 Tm-2 Tn-2 Tm-1 Tn-1 Tm Tn Tm+1 Time MTA Zone 2: rm-3,MTA2 rm-2,MTA2 rm-1,MTA2 www.riegl.com

  8. MTA Zone 3 Sm-3 Sm-2 Sm-1 Sm Sm+1 Amplitude En-1 En-3 En En-2 Tm-3 Tn-3 Tm-2 Tn-2 Tm-1 Tn-1 Tm Tn Tm+1 Time MTA Zone 3: rm-4,MTA3 rm-3,MTA3 rm-2,MTA3 www.riegl.com

  9. MTA Zone 4 Sm-3 Sm-2 Sm-1 Sm Sm+1 Amplitude En-1 En-3 En En-2 Tm-3 Tn-3 Tm-2 Tn-2 Tm-1 Tn-1 Tm Tn Tm+1 Time MTA Zone 4: rm-5,MTA4 rm-4,MTA4 rm-3,MTA4 www.riegl.com

  10. MTA Zone 1, 2, 3 or 4 ? Sm-3 Sm-2 Sm-1 Sm Sm+1 Amplitude En-1 En-3 En En-2 Tm-3 Tn-3 Tm-2 Tn-2 Tm-1 Tn-1 Tm Tn Tm+1 Time MTA 1 MTA 2 ? rm,MTA1 MTA 3 rm-1,MTA2 MTA 4 rm-2,MTA3 rm-3,MTA4 www.riegl.com

  11. Maximum unambiguous range vs. pulse repetition rate Maximum unambiguous measurement range Ru [m] Ru=375m @ 400kHz x Pulse repetition rate [kHz] www.riegl.com

  12. Known methods in avoiding range ambiguities: • careful choice of operating altitudes • Spatial multiplexing:  2 x RIEGL LMS-Q680i • Wavelength multiplexing: RIEGL VQ-820-G (532nm), RIEGL VQ-580 (1064nm) Known methods in resolving range ambiguities: • Spatial analysis based on known distance (RiANALYZE) www.riegl.com Methods in avoiding or resolving range ambiguities

  13. Avoiding range ambiguities in flight planning MTA zone 1 MTA zone 2 MTA zone 3 www.riegl.com

  14. Avoiding range ambiguities in flight planning www.riegl.com

  15. Spatial Multiplexing Spatial separation by scanner orientation Spatial separation by mirror synchronization 1PPS typ. > 1 deg typ. > 10 deg deam divergence typ. < 0.5 mrad www.riegl.com

  16. Wavelength multiplexing Wavelength multiplex by using 2+ wavelengths 532 nm 1064nm 1550 nm VQ-820G VQ-580 Q-680i www.riegl.com

  17. Resolving range ambiguities by spatial analysis www.riegl.com

  18. Advantages and Disadvantages www.riegl.com

  19. New approach, Step 1: Variation of pulse repetition intervals Sm Sm+1 Sm+2 Sm+3 Sm+4 Amplitude En+2 En+3 En En+1 Time Tm Tn Tm+1 Tn+1 Tm+2 Tn+2 Tm+3 Tn+3 Tm+4 Δtm+2 Δtm+2 Δtm+1 Δtm+1 Δtm+3 Δtm+3 Δtm+4 Δtm+4 τ = PRR-1 τ = PRR-1 τ τ τ τ τ τ rm+2,MTA1 rm,MTA1 rm+1,MTA1 rm+3,MTA1 rm,MTA2 = rtrue rm+1,MTA2 = rtrue rm+2,MTA2=rtrue www.riegl.com

  20. New approach, Step 2: Analysis of the influence of PRI jitter  www.riegl.com

  21. RIEGL VQ-580 online waveform processing airborne laser scanner RiMTA automated range ambiguity resolution RIEGL LMS-Q680i full waveformairborne laser scanner www.riegl.com RiMTA

  22. One scan stripe transits 3 MTA Zones RIEGL LMS-Q680i PRR = 400kHz Ru = 375m 1000 MTA 3 900 800 700 MTA 2 600 500 Alt AGL [m] 400 MTA 1 300 200 0 20 40 60 80 100 120 140 t [s] www.riegl.com

  23. RIEGL LMS-Q680i PRR = 400kHz Ru = 375m 1000 MTA 3 900 800 700 MTA 2 600 500 Alt AGL [m] 400 MTA 1 300 200 0 20 40 60 80 100 120 140 t [s] www.riegl.com One scan stripe transits 3 MTA Zones

  24. RIEGL LMS-Q680i PRR = 400kHz Ru = 375m 1000 MTA 3 900 800 700 MTA 2 600 500 Alt AGL [m] 400 MTA 1 300 200 0 20 40 60 80 100 120 140 t [s] www.riegl.com One scan stripe transits 3 MTA Zones

  25. RIEGL LMS-Q680i PRR = 400kHz Ru = 375m 1000 MTA 3 900 800 700 MTA 2 600 500 Alt AGL [m] 400 MTA 1 300 200 0 20 40 60 80 100 120 140 t [s] www.riegl.com One scan stripe transits 3 MTA Zones

  26. RIEGL LMS-Q680i PRR = 400kHz Ru = 375m 1000 MTA 3 900 800 700 MTA 2 600 500 Alt AGL [m] 400 MTA 1 300 200 0 20 40 60 80 100 120 140 t [s] www.riegl.com One scan stripe transits 3 MTA Zones

More Related