360 likes | 479 Vues
This research presents a model-based approach using multi-armed bandits to enhance ad matching across various web content by exploring and exploiting existing taxonomies. By leveraging dimensionality reduction techniques, the proposed multi-level policy efficiently allocates ads to webpages while maximizing click-through rates (CTR), ultimately generating revenue for advertisers. The study incorporates online learning strategies to continuously adapt to user behavior, allowing for quick identification of effective ad placements. Experimental results demonstrate the model's effectiveness in real-world scenarios.
E N D
Bandits for Taxonomies: A Model-based Approach Sandeep Pandey Deepak Agarwal Deepayan Chakrabarti Vanja Josifovski
Ads DB Ads (click) The Content Match Problem Advertisers Ad impression: Showing an ad to a user
Ads DB Ads (click) The Content Match Problem Advertisers Ad click: user click leads to revenue for ad server and content provider
The Content Match Problem Ads Ads DB Advertisers The Content Match Problem: Match ads to pages to maximize clicks
The Content Match Problem Ads Ads DB Advertisers • Maximizing the number of clicks means: • For each webpage, find the ad with the best Click-Through Rate (CTR), • but without wasting too many impressions in learning this.
Online Learning • Maximizing clicks requires: • Dimensionality reduction • Exploration • Exploitation Both must occur together Online learning is needed, since the system must continuously generate revenue
Root Apparel Computers Travel Page/Ad Taxonomies for dimensionality reduction • Already exist • Actively maintained • Existing classifiers to map pages and ads to taxonomy nodes Learn the matching from page nodes to ad nodes dimensionality reduction
Online Learning • Maximizing clicks requires: • Dimensionality reduction • Exploration • Exploitation Taxonomy ? Can taxonomies help in explore/exploit as well?
Outline • Problem • Background: Multi-armed bandits • Proposed Multi-level Policy • Experiments • Related Work • Conclusions
(unknown payoff probabilities) p1 p2 p3 Background: Bandits Bandit “arms” • Pull arms sequentially so as to maximize the total expected reward • Estimate payoff probabilities pi • Bias the estimation process towards better arms
Background: Bandits Webpage 1 Bandit “arms” = ads ~109 pages Webpage 2 Webpage 3 ~106 ads
Ads One bandit Webpages Background: Bandits Unknown CTR Content Match = • A matrix • Each row is a bandit • Each cell has an unknown CTR
Priority 1 Priority 2 Priority 3 Background: Bandits • Bandit Policy • Assign priority to each arm • “Pull” arm with max priority, and observe reward • Update priorities Allocation Estimation
Background: Bandits • Why not simply apply a bandit policy directly to our problem? • Convergence is too slow ~109 bandits, with ~106 arms per bandit • Additional structure is available, that can help Taxonomies
Outline • Problem • Background: Multi-armed bandits • Proposed Multi-level Policy • Experiments • Related Work • Conclusions
Multi-level Policy Ads classes Webpages classes …… … … …… Consider only two levels
Compu-ters Ad parent classes Apparel Travel Ad child classes Block One bandit Multi-level Policy Apparel …… Compu-ters … … …… Travel Consider only two levels
Compu-ters Ad parent classes Apparel Travel Ad child classes Block One bandit Multi-level Policy Apparel …… Compu-ters … … …… Travel Key idea: CTRs in a block are homogeneous
Multi-level Policy • CTRs in a block are homogeneous • Used in allocation (picking ad for each new page) • Used in estimation (updating priorities after each observation)
Multi-level Policy • CTRs in a block are homogeneous • Used in allocation (picking ad for each new page) • Used in estimation (updating priorities after each observation)
? Page classifier Multi-level Policy (Allocation) • Classify webpage page class, parent page class • Run bandit on ad parent classes pick one ad parent class A C T A C T
Page classifier Multi-level Policy (Allocation) • Classify webpage page class, parent page class • Run bandit on ad parent classes pick one ad parent class • Run bandit among cells pick one ad class • In general, continue from root to leaf final ad ad A C T ? A C T
Page classifier Multi-level Policy (Allocation) Bandits at higher levels • use aggregated information • have fewer bandit arms • Quickly figure out the best ad parent class ad A C T A C T
Multi-level Policy • CTRs in a block are homogeneous • Used in allocation (picking ad for each new page) • Used in estimation (updating priorities after each observation)
Multi-level Policy (Estimation) • CTRs in a block are homogeneous • Observations from one cell also give information about others in the block • How can we model this dependence?
Multi-level Policy (Estimation) • Shrinkage Model # impressions in cell # clicks in cell Scell | CTRcell ~ Bin (Ncell, CTRcell) CTRcell ~ Beta (Paramsblock) All cells in a block come from the same distribution
Multi-level Policy (Estimation) • Intuitively, this leads to shrinkage of cell CTRs towards block CTRs E[CTR] = α.Priorblock + (1-α).Scell/Ncell Estimated CTR Beta prior (“block CTR”) Observed CTR
Outline • Problem • Background: Multi-armed bandits • Proposed Multi-level Policy • Experiments • Related Work • Conclusions
Experiments Root Depth 0 20 nodes Depth 1 We use these 2 levels 221 nodes Depth 2 … Depth 7 ~7000 leaves Taxonomy structure
Experiments • Data collected over a 1 day period • Collected from only one server, under some other ad-matching rules (not our bandit) • ~229M impressions • CTR values have been linearly transformed for purposes of confidentiality
Experiments (Multi-level Policy) Clicks Number of pulls Multi-level gives much higher #clicks
Experiments (Multi-level Policy) Mean-Squared Error Number of pulls Multi-level gives much better Mean-Squared Error it has learnt more from its explorations
Experiments (Shrinkage) without shrinkage Clicks Mean-Squared Error with shrinkage Number of pulls Number of pulls Shrinkage improved Mean-Squared Error, but no gain in #clicks
Outline • Problem • Background: Multi-armed bandits • Proposed Multi-level Policy • Experiments • Related Work • Conclusions
Related Work • Typical multi-armed bandit problems • Do not consider dependencies • Very few arms • Bandits with side information • Cannot handle dependencies among ads • General MDP solvers • Do not use the structure of the bandit problem • Emphasis on learning the transition matrix, which is random in our problem.
Conclusions • Taxonomies exist for many datasets • They can be used for • Dimensionality Reduction • Multi-level bandit policy higher #clicks • Better estimation via shrinkage models better MSE