1 / 30

An Instrument Concept Study for OWL Multi-Object, Multi-Field Ir Spectrograph

An Instrument Concept Study for OWL Multi-Object, Multi-Field Ir Spectrograph. OWL-MOMFIS. Institutes: Laboratoire d’Astrophysique de Marseille (LAM) GEPI, Observatoire Paris-Meudon LESIA, Observatoire Paris-Meudon Centre de Recherche Astronomique de Lyon (CRAL) ONERA Main contributors:

tamira
Télécharger la présentation

An Instrument Concept Study for OWL Multi-Object, Multi-Field Ir Spectrograph

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. An Instrument Concept Studyfor OWLMulti-Object, Multi-Field Ir Spectrograph OWL-MOMFIS MOMFIS

  2. Institutes: • Laboratoire d’Astrophysique de Marseille (LAM) • GEPI, Observatoire Paris-Meudon • LESIA, Observatoire Paris-Meudon • Centre de Recherche Astronomique de Lyon (CRAL) • ONERA • Main contributors: • Eric Prieto (PM), J.-P. Kneib (science case), P.-E. Blanc, J.-G. Cuby (PI) (LAM) • F. Hammer, M. Marteaud, P. Vola, P. Jagourel (OPM) • Collaboration to continue on ELT-Design Study • ESO contact: M. Casali Collaborations MOMFIS

  3. Science Case The ‘faint objects, near IR’ cosmology case… The End of the Dark Ages: First Light and Reionization (JWST SRD, E-ELT Opticon science case, TMT, GMT, SKA, etc.) • Nature of the first objects: popIII stars, BHs, AGNs,… • N(z), SFR(z), 〈Z〉(z), etc • How did they re-ionize the Universe ? • Mass Assembly of the galaxies Nick Gnedinhttp://casa.colorado.edu/~gnedin MOMFIS

  4. Number counts z = 6 JWST Science Req. Document Dz = 1 MOMFIS

  5. Complementarity with JWST OWL spectro 10ksec MOMFIS

  6. Performance J =28-29, R=4000 MOMFIS

  7. High level science specs MOMFIS

  8. MOMFIS

  9. Concept steering mirror instrument DM Pick-off mirror • F/6 input beam • Spherical Pick-off mirrors • Active Toroidal steering mirrors: • z translation • Rot: x,y,z • Curvature radius adaptation • Feed to fixed optics: • DM • Slicers • Spectrographs MOMFIS

  10. Conceptual Design WFS Beam steering mirror Slicer unit 3 spectrographs 1 cryostat ADC MOMFIS

  11. Spectrograph • F/1.8 camera • Detector: 2kx2k, 18 mm pixels • 150 mm pupil MOMFIS

  12. Cryostats • 900 Kg / cryostat • 190 LN2 l/day/unit • or 3-4 CCC f 760 mm Volume: 1,4m3 2300 mm f760 mm 1700 mm MOMFIS

  13. Beam Steering Mirrors Optical surface (metallic) Piezo actuator blocked Displacement probes Piezo actuator activated FEA model Zemax  Zernike polynomials Dz data file MOMFIS

  14. Mechanics 4.5 m Cable wrap Safety brake • Bearing Ø 4.5 m. Feasible (ROLLIX). Cost estimate: 60 kEuros • Motor. Feasible (ARTUS) Need specific development : 50KEuros Cost between 50 & 75 kEuros • Encoder. (HEIDENHAIM) Std tape (10m) allows ~ 270° encoding. Rotator implementation: MOMFIS

  15. Mechanics: FEA analysis Steering mirrors Corrector Carbon/epoxy Focal plate: carbon/epoxy + Iron Platform: steel Cryostats: stainless steel The mass of spectrograph composite structure is 3000 kg. At equivalent stiffness, the gain vs steel or Al is a factor 2 to 2.5. MOMFIS

  16. Flexures • The order of magnitude of flexures (for any 60° rotation of telescope) is: 1°- Translations: 100 µm. 2°- Rotations: 50 µrad. • The first eigen frequency of this structure is 36 Hz. MOMFIS

  17. Internal metrology instrument Dichroic Sensor DM Pick-off miroir • Artificial source at pick-off mirror level • Trough BSM and DM • Dichroic & WFS before instrument • Sensor: • WFE • Tip-Tilt • Defocus MOMFIS

  18. Positioner (a la OzPoz) MOMFIS

  19. Overall implementation MOMFIS

  20. MOAO 200 x 200 100 x 100 50 x 50 • Constellation of 3 NGS • Encircled energy in 50 mas pixels • H band 100 x 100 14 ESO Simulations (Le Louarn et al.) 15 16 MOMFIS

  21. MOAO Sky coverage ESO MOMFIS

  22. Conclusions #1 • Conceptual design meets science specs • Improve design (e.g. positioner, starbugs, hexapods for BSM) • Reduce weight (currently factor ~2 above spec) • Design relies on existing technologies, no critical development items (but for AO) • R&D activities continue in Opticon / ELT DS FP6 programmes: steering mirrors, slicers, metrology, etc. • MOAO: • Further studies required to demonstrate concept, open loop operation, etc. • Rely on AO developments done elsewhere (DMs, WFS) • Phasing with OWL-AO development plan (GLAO, MCAO) MOMFIS

  23. Conclusions #2 • Fallback operation: GLAO, MCAO on a smaller field • Phased implementation: • Start with GLAO • Continue with MCAO • Implement MOAO in a 2nd/3rd phase • Redundancy / modularity (e.g. one extra-cryostat) : maintainability • Growing telescope: ‘just’ a matter of pupil stops ? MOMFIS

  24. Conclusions #3 • Development time: • ~ 4 yrs to PDR, including phase A & breadboarding • ~ 6 yrs from PDR to first light • Cost: • 30 – 40 M€ • 300 FTEs minimum • Requires multi-institute partnerships, large integration/testing facilities, etc. MOMFIS

  25. Conclusion #4: Feedback to ESO/OWL • Big diameter helps the science case • Consider 60 being as overwhelming as 100 • Include MOAO & LGS in system analysis • Adapter/rotator (2 tons) not usable • Active and adaptive WFS gone, but instrument can provide alternative ones • Weight spec (17 tons) likely too strict • Handling & integration in focal station is a concern • Non gravity stable platform : can be dealt with but adds complexity to instrument (metrology & control) MOMFIS

  26. MOMFIS

  27. Today state of the Art: UDF-NICMOSBouwens et al 2004 MOMFIS

  28. Today state of the Art: Cluster lensesEllis et al 2001, Kneib et al 2004, Egami et al 2004 MOMFIS

  29. Today state of the Art: spectroscopy 920 R I B V Det MOMFIS

  30. High redshift galaxy size ~0.1” Bouwens et al 2004 MOMFIS

More Related