1 / 9

7-sonli umumiy o’rta ta’lim maktabi 7-sinf o’quvchisi g eometriya fanidan tayyorlagan slaydi

7-sonli umumiy o’rta ta’lim maktabi 7-sinf o’quvchisi g eometriya fanidan tayyorlagan slaydi. Navoiy viloyati Uchquduq tumani 7-sonli umumiy o’rta ta’lim maktab 7-sinf o’quvchisi Ikromov Shohijahonning geometriya fanidan. Mavzu : 54-§. Uchburchak tengsizligi.

tori
Télécharger la présentation

7-sonli umumiy o’rta ta’lim maktabi 7-sinf o’quvchisi g eometriya fanidan tayyorlagan slaydi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 7-sonli umumiy o’rta ta’lim maktabi 7-sinf o’quvchisi geometriyafanidan tayyorlaganslaydi Navoiy viloyati Uchquduq tumani7-sonli umumiyo’rta ta’lim maktab7-sinf o’quvchisiIkromov Shohijahonninggeometriyafanidan

  2. Mavzu: 54-§. Uchburchaktengsizligi

  3. Teorema: Uchburchakningistalganbirtomoniqolganikkitomoniyig’indisidankichik. AC < AB + BC ∆ABC (1-rasm) • U holda, ⁄ ACD > ⁄ 2 chunki • ⁄ 1 = ⁄ 2 , Bu burchaklar ACD uchburchakka tegishli. Eng katta burchak qarshisida katta tomonyotishinihisobgaolsak, AC < AD tengsizlikkaegabo’lamiz.

  4. U holda, AC < AB + BD chunki AD = AB +BD. Undan BD = BC ekanliginihisobgaolsak, AC < AB + BC nihosilqilamiz. Birto’g’richiziqdayotmaganixtiyoriyuchta A, B va C nuqtauchun AC < AB + BC, AB < AC + BC va BC < AB +AC tengsizliklaro’rinli

  5. Masala.Uchburchakningikkitomoni 0,7 va 1,9. Agaruchinchitomonibutunsonekanligima’lumbo'lsa, uni toping(2-rasm). • Yechilishi:Berilganuchburchakningikkitatomonima’lum: 0,7 va 1,9. Uchinchitomoniniuchburchaktengsizligidanfoydalanibtopamiz: • x + 0,7 > 1,9 , yokix > 1,2 1,9 + 0,7 > x , yokix < 2,6. • Buikkitengsizlikdan 1,2 < x < 2,6 nihosilqilamiz. • x- butunson, faqatx=2qiymatbuqo'sh- tengsizlikniqanoatlantiradi. Demak, uchburchakningnoma’lumtomoni 2 gateng. • Javob: 2

  6. 1. Uchburchaktengsizliginingmazmuninimadaniborat? • 2. Uchburchaktengsizligiqandaymasalalarniyechishdaqo'llaniladi? • 3. Uzunliklari1 m ,2 m va 3 mbo'lgankesmalardanuchburchakyasashmumkinmi? • 4. Tomonlari: a) 2; 3; 4; b) 2; 2; 4; c) 3,6; 1,8; 5;56; 38; 19 bo'lganuchburchakmavjudmi?

  7. 5. Tengyonliuchburchaktomonlari: a) 7 va 3 b) 10 va 5; c) 8 va 5 bo'lsa, uchinchitomoninitoping. 6. Masalaningberilishito'g'rimi(3-rasm)?

  8. 7. Uchburchakningistalgantomoniuningqolganikkitatomoniayirmasidan katta bo'lishiniisbotlang. 8. Tengyonliuchburchakningperimetri 25 sm,birtomoniikkinchi tomonidan 4 smortiq va tashqiburchaklaridanbirio'tkirbo'lsa, uchburchakningtomonlarinitoping.

  9. 9*.Uzunliklari 2; 3; 4; 5 va 6 gatengkesmalardannechtaturliuchburchakyasashmumkin? 10. TekislikdagiuchtaA, B. CnuqtalaruchunAB+BC > ACtengsizlikbajarilsa, AB, BC va ACkesmaiarqandaygeometrikshaklniifodalaydi? 11*.Uchburchakmedianasiuchburchakningyarimperimetridan (perimetriningyarmidan) kichikekanliginiisbotlang. 12. Aylananingeng katta vatariuningdiametribo'lishiniisbotlang.

More Related