Download
sheet metal forming n.
Skip this Video
Loading SlideShow in 5 Seconds..
Sheet Metal Forming PowerPoint Presentation
Download Presentation
Sheet Metal Forming

Sheet Metal Forming

417 Vues Download Presentation
Télécharger la présentation

Sheet Metal Forming

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Sheet Metal Forming 2.810 Fall 2002 Professor Tim Gutowski Minoan gold pendant of bees encircling the Sun, showing the use of granulation, from a tomb at Mallia, 17th century BC. In the Archaeological Museum, Iráklion, Crete.

  2. Historical Note; Sheet metal stamping was developed as a mass production technology for the production of bicycles around the 1890’s. This technology played an important role in making the system of interchangeable parts economical (perhaps for the first time).

  3. Steps in making Hub Steps in Sprocket making

  4. Stress Strain diagram – materials selection

  5. Basic Sheet Forming Processes(from http://www.menet.umn.edu/~klamecki/Forming/mainforming.html) Shearing Drawing Bending

  6. Shear and corner press

  7. Brake press

  8. Finger press

  9. Sheet T Punch D Die Part or slug Shearing Operation Force Requirement F = 0.7 T L (UTS) T = Sheet Thickness L = Total length Sheared UTS = Ultimate Tensile Strength of material

  10. t Y/2 s Y Yield Criteria tmax = (1/2) Y tmax = (2/3)1/2 Y Tresca Mises

  11. Schematic of a Blanked Edge

  12. Workpiece Die Bending Force Requirement Force Punch T = Sheet Thickness W = Total Width Sheared (into the page) L =Span length UTS = Ultimate Tensile Strength of material T L Engineering Strain during Bending: e = 1/((2R/T) + 1) R = Bend radius Minimum Bend radius: R = T ((50/r) – 1) r = tensile area reduction in percent

  13. Stress distribution through the thickness of the part Y Y yY s s s h -Y -Y Elastic Elastic-plastic Fully plastic

  14. Springback • Over-bend • Bottom • Stretch

  15. Pure Bending tension compression Bending & Stretching

  16. Stretch Forming Loading Pre-stretching Wrapping Release * source: http://www.cyrilbath.com/sheet_process.html

  17. Stretch Forming

  18. Stretch forming

  19. Stretch Forming Force Requirement F = (YS + UTS)/2 * A F = stretch forming force (lbs) YS = material yield strength (psi) UTS = ultimate tensile strength of the material (psi) A = Cross-sectional area of the workpiece (in2) • Example of Force Calculation • Calculate the force required to stretch form a wing span having a cross-sectional area of .50X120” made from 2219 aluminum alloy having a yield strength of 36,000 psi and a UTS of 52,000 psi: • F = 88000/2 * 60 = 2,640,000 lbs = 1320 tons • Calculate the force required to shear a 10” diameter, 1/8” thick blank from mild steel with a UTS of 45,000 psi: • F = 0.7 (.125)(p)(10) 45,000 = 62 tons

  20. Auto body panels • 10 - 11 panels • 3 to 5 dies each • ~$0.5M each • ~$20M investment

  21. Tooling for Automotive Stamping

  22. Machines

  23. Material Selection Material selection is critical in both product and process design. Formability is the central material property. This property must be balanced with other product and process considerations such as strength, weight, cost, and corrosion resistance. Auto vs. Aerospace Example Auto Body Panel Airplane Body Panel Progressive stamping stretch forming 1010 Steel, cold-rolled 2024 Aluminum, T3 temper .04” sheet, custom order .08” sheet, oversize Double-sided Zinc clad mechanically polished Cost ~ $.35-.45/lb Cost ~ $4.0/lb UTS ~ 300 MPa UTS ~ 470 MPa YS ~ 185 MPa YS ~ 325 MPa Elongation ~ 42% Elongation ~ 20% n = .26 n = .16

  24. Comparison of representative Parts: Aero and Auto

  25. Aerospace Stretch Forming Body Panel Process Parts Received Mylar Protection Applied ‘Burr’ Edges in tension Stretch Forming Index to Block Clad and Prime Surfaces Chemical Milling ‘Burr’ Edges and Inspect Hand Trim Process Flow for Automobile Door Stamping Operation Raw material Blank material starting dimensions Drawing Pierce Restrike Flange

  26. Design: Stretch Forming vs. Stamping • Stretch Forming Advantages over Stamping • Tighter tolerances are possible: as tight as .0005 inches on large aircraft parts • Little problem with either wrinkling or spring back • Large, gently contoured parts from thin sheets • Stretch forming Disadvantages over Stamping • Complex or sharply cornered shapes are difficult or impossible to form • Material removal – blanking, punching, or trimming – requires secondary operations • Requires special preparation of the free edges prior to forming

  27. Springback

  28. y x h L b r = 1/K M M y sY s E e ey Elastic Springback Analysis • Assume plane sections remain plane: • ey = - y/r (1) • Assume elastic-plastic behavior for material • = E e e e  • Y e e

  29. M Loading MY EI EI Unloading 1/r 1/rY 1/R1 1/R0 3. We want to construct the following Bending Moment “M” vs. curvature “1/r” curve Springback is measured as 1/R0 – 1/R1 (2) Permanent set is 1/R1

  30. 4. Stress distribution through the thickness of the beam Y Y yY s s s h -Y -Y Elastic Elastic-plastic Fully plastic

  31. Y s dA ds b 5. M = As y dA y dy h Elastic region (3) At the onset of plastic behavior s = - y/r E = - h/2r E = -Y (4) This occurs at 1/r = 2Y / hE = 1/rY (5) Substitution into eqn (3) gives us the moment at on-set of yield, MY MY = - EI/rY = EI 2Y / hE = 2IY/h (6) After this point, the M vs 1/r curve starts to “bend over.” Note from M=0 to M=MY the curve is linear.

  32. Y In the elastic – plastic region yY s (7) Note at yY=h/2, you get on-set at yield, M = MY And at yY=0, you get fully plastic moment, M = 3/2 MY

  33. To write this in terms of M vs 1/rrather than M vs yY, note that the yield curvature (1/r)Ycan be written as (see eqn (1)) (8) Where eY is the strain at yield. Also since the strain at yY is -eY, we can write (9) Combining (8) and (9) gives (10)

  34. Eqn(11) M Loading MY EI EI Unloading 1/r 1/rY 1/R1 1/R0 Substitution into (7) gives the result we seek: (11) (12) Elastic unloading curve

  35. Now, eqn’s (12) and (13) intersect at 1/r = 1/R0 Hence, Rewriting and using 1/r = 2Y / hE, we get (13)

  36. New developments • Tailored blanks • Binder force control • Segmented dies • Quick exchange of dies • Alternative materials; cost issues

  37. The Shape Control Concept

  38. Conventional Tooling Tool Pallet Parking Lot

  39. 60 Ton Matched Discrete Die Press(Robinson et al, 1987) Press Motion Tool Setup Actuators Passive Tool Programmable Tool

  40. Cylindrical Part Error Reduction 6 0 1 . 6 1 . 4 5 0 M A X 1 . 2 R M S 4 0 1 MAXIMAL SHAPE ERROR [x0.001 in.] RMS Error [x0.001 in.] 3 0 0 . 8 0 . 6 2 0 0 . 4 1 0 0 . 2 S Y S T E M E R R O R T H R E S H O L D 0 0 P 1 P 2 P 3 P 4 P A R T C Y C L E

  41. Large Scale Tool 6 feet

  42. Stretch Forming with Reconfigurable Tool @ Northrop Grumman

  43. Stamping and TPS: Quick Exchange of Dies • Ref. Shigeo Shingo, “A Revolution in Manufacturing: • The SMED System” Productivity Press. 1985 • Simplify, Organize, Standardize, • Eliminate Adjustments, • Convert Internal to External Set-Ups

  44. Standard fixtures

  45. Alternative materials for auto body panels

  46. $0.35/lb 0.03 thick 7.6 lb 40% scrap $4.25 mat’l cost 400/hr 5 workers $18.90/hr (Union) $0.24 labor cost $5,000,000 equipment $900,000 tools $7.71 unit cost at 100,000 units $0.65/lb .0.12 thick 7.0 lb 6% scrap $4.84 mat’l cost 40/hr $12.50/hr (non-Union) $0.63 labor cost $1,200,000 eqipment $250,000 tools $7.75 unit cost at 100,000 units ComparisonSteel Vs SMC Ref John Busch

  47. Cost comparison between sheet steel and plastics and composites for automotive panels ref John Busch

  48. Environment • punching Vs machining • hydraulic fluids and lubricants • scrap • energy • painting, cleaning

  49. Steel can production at Toyo Seikan See Appendix D; http://itri.loyola.edu/ebm/