160 likes | 284 Vues
Super. String Field Theory. I.Ya. A ref'eva Steklov Mathematical Institute. (Cubic SSFT). (Lecture II). II SUMMER SCHOOL IN MODERN MATHEMATICAL PHYSICS September 1-12, 2002 Kopaonik, (SERBIA) YUGOSLAVIA. String Field Theory. L.Bonora. OUTLOOK. SuperString Field Theory.
E N D
Super String Field Theory I.Ya. Aref'eva Steklov Mathematical Institute (Cubic SSFT) (Lecture II) II SUMMER SCHOOL INMODERN MATHEMATICAL PHYSICSSeptember 1-12, 2002Kopaonik, (SERBIA) YUGOSLAVIA
String Field Theory L.Bonora OUTLOOK SuperString Field Theory • Cubic SSFT action 2-nd • Tachyon Condensation in SSFT • RollingTachyon 1-st • Vacuum SuperString Field Theory 3-d i)New BRST charge ii) Special solutions - sliver, lump, etc.: algebraic; surface states; Moyal representation
2dim Majorana spinor, Super String Theory (NSR-formalism)
Super String Theory (NSR-formalism) r=1/2 for R-sector; r=0 for NS-sector Quantization Correlators
Identity Overlap Gross, Jevicki Three string vertex overlap
Fermionic Vertices Identity Three string vertex
Quantization Bosonization Superstring (NSR-formalism); ghosts r=1/2 for R-sector; r=0 for NS-sector
Cubic Super String Field Theory E.Witten (1986) Went,…. PROBLEMS E.O.M. I.A., Medvedev, Zubarev (1990) Preitschopf, Thorn,Yost (1990) Up to a kernal
String Field Theory on a non-BPS brane I.A.,Belov,Koshelev,Medvedev(2001)
V Tachyon Condensation in SFT • Bosonic String - Tachyon • Super String has no Tachyon • Tachyon inGSO( - ) sector of NS string Kostelecky,Samuel (1989) • Level truncation
Level GSO Name Picture -1 Picture 0 0 + u - 1/2 - t 1 + r 3/2 - s 2 + I.A.,Belov,Koshelev,Medvedev (2001) Vertex operators in pictures –1 and 0 Berkovits,Sen,Zwiebach (2000)
Tachyon Condensation in SSFT 97.5% For the non-polinomial Berkovic action (Berkovic, Sen, Zwiebach):85%, 90.5% 105%
FAQ:cubic unbounded A.:Auxiliary fields u, t fields