1 / 11

Understanding Height and Distance: Practical Applications of Trigonometry

This resource delves into the principles of height and distance measurement using trigonometry, specifically focusing on angles such as 30°, 45°, and 60°. It includes step-by-step explanations and examples that illustrate how to calculate heights based on known distances and angles. By understanding these concepts, students can apply their knowledge to real-world situations, making it a valuable learning tool for mathematics and geometry courses. Equipped with practical examples, this guide enhances clarity and comprehension.

vail
Télécharger la présentation

Understanding Height and Distance: Practical Applications of Trigonometry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Height and Distance rxbIrisMG.gurjIqisMG.jsivMdrisMG jmwq=dsvI srkwrI.sInIAr.sYkMfrI.skUl.auksIsYxIAW.ijlwpitAwlw

  2. BUimkw • iqkoximqI iv`c AsI iek smkox iqRBuj dI vrqo krdy hW [ • ies leI AsI iemwrq mInwr , phwV jW dr`Kq Awid nU iek lMbwqmk ryKw dy rUp ivc Aqy AwdmI jW phwVI dI cotI Awid nUM iek ibMdU dy rUp ivc drswaudw hY [

  3. idRStIryKw • jdo AsI iksy vsqU nMU dyKdy hW qW swfI A`K Aqy aus vsqU nUM imlwaux vwlI ryKw idRStI nUM AsI ryKw AwKdy hW [

  4. aucwxkox jykr koeI vsqU swfI A`K dI lytvI ryKw qo au`pr qW swNnMU vsqU nUM dyKx leI isr nUM au`pr cu`kxw pvygw [ies qrw swfIAw A`KW iek kOx nwl a`pr v`l GuMm jwdIAw hn [ ies kox nUM AsI aucwx kOx AwKdy hW [

  5. invwx kox • jykr koeI vsqU swfI A`Kw dI lytvI ryKw qo hyTW hovy qW swnMU vsqU nMU dyKx leI isr nMU hyTw krnw pvygw ies qrw swfIAw A`Kw ie`k kox nwl hyTw v`l GuMm jWdIAW hn ies kox nUM AsI invwx kox AwKdy hW [

  6. audwrhx • iek mInwr DrqI a`pr is`Dw KVw hY [mInwr dy ADwr qO 30 mItr dUrI qy siQq i`k ibMdU qO mInwr dI cotI dw aucwx kxo 60 hY [ mInwr dI aucweI pqw kro [ • h`l : • mMn lau AB mInwr hY Aqy C mInwr dy ADwr ibMdU 30 mI : dUr DrqI qy siQq auh ibMdU hY , ijs qo mInwr dI cotI dw aucwx kox 60 hY [mInwr ryKw KMf dy rUp ivc drswaudy hoey AsI pRSn nUM icqr 13 .5 ivc idKwey Anuswr drsw skdy hW [

  7. hux tan 60=AB/BC (ies leI tanø =lMb/ADwr) • =>tan60 =AB/30 [ies leI bc =30 mI: ] • => anderehood 3×30 =ab [ies leI tan 60=3] • Bwv AB =30 anderehood 3 miter: • Anderehood 3×1.732lYx qy • AB =[30×1.732] mI.= 51.96 mI.

  8. audwrhx • nUMryKwKMfdyrUpiv`cdrswkyAsIpRSnnMUic`qr 13.7 iv`cidKweyAnuswrdrswskdyhW [ huxsmkoxIiqkox ABC< ivc sin 45= ab /ac [¿ iesleI sin ø =lMb /krx • jW 1/ anderehood 2 =12/ac ikauik ac 12 anderehood 2 • =12×1.414 • =16.968 • iesqrwqwrKMbydyADwribMdU (Bwv B ) qo 16.97 mI : dIdUrIqyjmInivcd`bIhY [ • iekibjlIdyKMbydIaucweI 12 mI : hY [ DrqIqyisDKVwr`KxleIiesdyisryqyiekstIldIqwrbMnIhY [ ijsdwdUsrwisrwbxwaudIhovyqWd`SoikqwrKMbydyADwribdUqOikMnIdUrqyjmInivcjmInivcdibAwhoieAwhY [jykriehstIldIqwrDrqI 45dwkOxd`bIhoeIhY ? • h`l :mMnlau AB ibjlIdwKMbwhYAqy ACÇ stIldUIqwrhY [ ibjlIdyKMby

  9. audwrhx • DrqIa`pris`DyKVyi`ek 10 mI ; a`ucyKMbydya`prlyisryqyie`kr`swbMinAWhYijsdwdUsrwisrwDrqIau`qysiQqkIqwigAwhY [ie`kklwkwrDrqIqor`syrwhIKMbydyaprlyisryv`ljwirhwhYjykrDrqInwl 30dwkoxbxwaudwhovyqWd`soikklwkwrnMUkMbydyisryq`kphMcxleIiknIdUrIqihkrnIpvygI [ • h`l : • mMnlau AB ie`k 10 mI: au`cwKMbwhYAqy AC r`swhYijsdw • isrwDrqIqysiQqhY [ klwkwribMdU C isryqoisryv`ljwrhIhY [ KMbynMUryKwKMfAqyAwdmInMUibMdUrUpivcdrswauxnwlAsIpRSnnMUic`qr 13.8 ivc` idKweyAnuswrdrswskdyhW [ • huxsmkoxIiqRkox ABC ivc

  10. sin 30 AB/AC [ ies leI sin ø =lMb /krx • Bwv =1/2 =10/ AC • jW AC =10×2 =20 • ies qrW klwkwr nMU KMby dy isry q`k phuMcx leI 20 mI : dUrI qYA krnI pvygI [

  11. DMnvwd

More Related