320 likes | 572 Vues
Global and Domestic Inflation Filippo Ferroni and Benoit Mojon Banque de France. INFLATION Monetary Policy and the Public Federal Reserve Bank of Cleveland 28-29 May 2014. Inflation: US , EA and Japan. Inflation: US , EA and Japan. Inflation: US and EA.
E N D
Global and Domestic InflationFilippo Ferroni and Benoit MojonBanque de France INFLATION Monetary Policy and the Public Federal Reserve Bank of Cleveland 28-29 May 2014
Global inflation, 1960 to 2008:a) impressive co-movementb) low forecast errorsIs this pattern still relevant after the Great recession?
Outline of the paper • Global Inflation: does it still help forecast domestic inflation? • SVAR insights on recent inflation developments • 2010-2012 : Too high • 2013-2014: Too low
Outline of the results • Global Inflation: does it still help forecast domestic inflation? Yes • SVAR insights on recent inflation developments • 2010-2012 : Too high Low productivity / financial cost • 2013-2014: Too low Weak demand <= fiscal policy?
Outline of the paper • Does Global Inflation help forecast domestic inflation? • Inflation co-movement • (Pseudo) out of sample forecasting performance • What does Global Inflation do to the inflation equation
Inflation co-movementShare of the variance of inflation explained by GI1990-2013, 22 OECD countries
Forecasting with Global Inflation • Horse race (Relative RMSE) 4 quarters ahead • UAR benchmark: π(t+4)=ρ4 π(t) • AR(1): π(t+4)=φ(L) π(t) • Factor +AR(1): π(t+4)=α(L) π(t)+ β(L) f(t), f(t)=GI(t) • Philips curves: π(t+4)=φ(L) π(t)+ θ(L) Y(t) • Commodity +AR: π(t+4)=φ(L) π(t)+ ψ(L) ComP(t) • Variations, with and withoutpriors,…
Forecasting with Global Inflation • Horse race (Relative RMSE) 4 quarters ahead • UAR benchmark: π(t+4)=ρ4 π(t) • AR(1): π(t+4)=φ(L) π(t) • Factor +AR(1): π(t+4)=α(L) π(t)+ β(L) f(t), f(t)=GI(t) • Philips curves: π(t+4)=φ(L) π(t)+ θ(L) Y(t) • Commodity +AR: π(t+4)=φ(L) π(t)+ ψ(L) ComP(t) • Variations, with and withoutpriors,…
Forecasting with Global Inflation • Horse race (Relative RMSE) 4 quarters ahead • UAR benchmark: π(t+4)=ρ4 π(t) • AR(1): π(t+4)=φ(L) π(t) • Factor +AR(1): π(t+4)=α(L) π(t)+ β(L) f(t), f(t)=GI(t) • Philips curves: π(t+4)=φ(L) π(t)+ θ(L) Y(t) • Commodity +AR: π(t+4)=φ(L) π(t)+ ψ(L) ComP(t) • Variations, with and withoutpriors,…
Forecasting with Global Inflation • Horse race (Relative RMSE) 4 quarters ahead • UAR benchmark: π(t+4)=ρ4 π(t) • AR(1): π(t+4)=φ(L) π(t) • Factor +AR(1): π(t+4)=α(L) π(t)+ β(L) f(t), f(t)=GI(t) • Philips curves: π(t+4)=φ(L) π(t)+ θ(L) Y(t) • Commodity +AR: π(t+4)=φ(L) π(t)+ ψ(L) ComP(t) • Variations, with and withoutpriors,…
Forecasting with Global Inflation • Horse race (Relative RMSE) 4 quarters ahead • UAR benchmark: π(t+4)=ρ4 π(t) • AR(1): π(t+4)=φ(L) π(t) • Factor +AR(1): π(t+4)=α(L) π(t)+ β(L) f(t), f(t)=GI(t) • Philips curves: π(t+4)=φ(L) π(t)+ θ(L) Y(t) • Commodity +AR: π(t+4)=φ(L) π(t)+ ψ(L) ComP(t) • Variations, with and withoutpriors,…
Forecasting with Global Inflation • Horse race (Relative RMSE) 4 quarters ahead • UAR benchmark: π(t+4)=ρ4 π(t) • AR(1): π(t+4)=φ(L) π(t) • Factor +AR(1): π(t+4)=α(L) π(t)+ β(L) f(t), f(t)=GI(t) • Philips curves: π(t+4)=φ(L) π(t)+ θ(L) Y(t) • Commodity +AR: π(t+4)=φ(L) π(t)+ ψ(L) ComP(t) • Variations, with and withoutpriors,… 15 modelsaltogether
What does GI do to the inflation equation • In sample, 1990-2013q3 regressions Factor +AR(1): π(t+4)=α(L) π(t)+ β(L) f(t), f(t)=GI(t)
Outline of the paper • Global Inflation: does it still help forecast domestic inflation? Yes • SVAR insights on recent inflation developments • 2010-2012 : Too high • 2013-2014: Too low
SVAR with sign restrictions • 5 variables, 1990-2013: • Exchange rate • Commodity price • Domestic GDP • Domestic CPI • Global inflation
SVAR with sign restrictionsHistorical var. decomp, Euro area
Too high Inflation 2010-2012 • Insights from structural analyses on the US • Inflation way to high / collapse of the output gap • Hall 2011 presidential address, Beaudry and Portier • Cost of capital on marginal cost + drop in Y/L • Christiano, Eichenbaum and Trabandt, 2014,Del Negro, Giannoni and Schorfheide, 2014 • Gilchrist et al., 2013 • Oil price rebound in 2009 • $148 in July 2008 • $ 40 in January 2009 • $ 100 in January 2010
Too low inflation in 2013-2014 • US: weaker demand • Fiscal policy (Christiano, Eichenbaum, Trabandt) • EA: double dip • fiscal consolidation/sovereign debt crisis
Too low inflation in 2013-2014 • US: weaker demand • Fiscal policy (Christiano, Eichenbaum, Trabandt) • EA : double dip • fiscal consolidation/sovereign debt crisis • Hall’s rejection of the Philips curve • Shouldn’t EA have been lower << abyssal output gap • Conjecture: financial cost channel (CET, DGS, Gilchrist & al)
Conclusion Only the world is a closed economy • Global inflation still helps forecast domestic inflation • Why inflation has been uniformly low recently in the US and the EA in spite of asymmetries • Weak world demand << fiscal policies in US and EA • Why inflation is global remains a puzzle