1 / 52

METEOROLOGY

METEOROLOGY. GEL-1370. Chapter Four. Humidity, Condensation & Clouds. Goal for this Chapter. We are going to learn answers to the following questions: Why eyeglasses often fog up after coming indoors on a cold day?

Albert_Lan
Télécharger la présentation

METEOROLOGY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. METEOROLOGY GEL-1370

  2. Chapter Four Humidity, Condensation & Clouds

  3. Goal for this Chapter We are going to learn answers to the following questions: • Why eyeglasses often fog up after coming indoors on a cold day? • On a cold winter, why do you feel your skin to be very dry, lips crack, and have itching sensation on the skin? • You often itchy throat during winter than summer? • Why you have different types, colors and shapes of cloud during various days and times of the year? • Learn various terms (relative humidity, vapor pressure, dew, frost, haze, fog, cirrus clouds, cumulus clouds, stratocumulus clouds, etc.) used by Meteorologists

  4. Water Circulation in the Atmosphere • Evaporation:Conversion of liquid water into vapor • Condensation: Conversion of water vapor into liquid • Precipitation: Stuff that falls to the surface from the growth of cloud particles (rain, snow or hail) • Transpiration: Release of moisture from plants/trees • Hydrologic Cycle: Cycling of water molecules from liquid to vapor and back to liquid- ocean – atmosphere – land – ocean • Some Facts: 1.5 billion billion gallons of water vapor evaporate into the atmosphere in a year; 85% from ocean (70% of the earth’s surface area) & 15% from evaporation and transpiration • Total Mass of Water Vapor ~ 7 days of precipitation for the globe (Residence time ~ 7 days)

  5. Hydrologic Cycle

  6. Saturation & Condensation • Saturation: When number of molecules escaping a parcel of air = number of returning molecules • Wind can push away the molecules from a water body and hence will enhance evaporation • Warm temperature will aid the molecules to move faster leading to evaporation – warmer the water, greater the rate by evaporation • Condensation Nuclei: Microscopic particles such as dust, smoke, salt from ocean spray, etc – serve as surfaces on which water vapor can condense • Condensation occurs when air is cooled – speed of the vapor molecules decrease leading to more condensation

  7. Saturation & Humidity • Saturation is more likely to occur in cool air than warm air – Warm air can hold more water vapor molecules before getting saturated than cold air – Warm air has greater capacity to hold water vapor • Absolute Humidity or Water vapor density in a parcel of air = Weight of water vapor (g) / volume of air (m3) • Specific Humidity in a parcel of air = Weight of water vapor (g) / Total weight of all the air (kg) • Mixing Ratio in a parcel of air = Weight of water vapor (g) / Weight of the dry air (kg) • Relative Humidity = Amount of water vapor in the air / Maximum amount of water required for saturation at that temperature

  8. Water molecules at the surface of the water – more molecules are evaporating than condensing – net evaporation is taking place

  9. Number of water molecules escaping = number returning – air is saturated with the water vapor

  10. Water vapor content inside the parcel of air (Humidity)

  11. Humidity contd. • Relative Humidity (RH) tells us how close the air is to being saturated • RH = (vapor pressure / saturation vapor pressure) x 100 • Air RH >100%, is said to be supersaturated • Vapor Pressure: Total pressure inside a parcel of air = Sum of the pressures of individual gases • Total pressure (1000 mb) = Partial pressure (PP) exerted by N2 (78% or 780 mb) + PP exerted by O2 (21% or 210 mb) + PP exerted by water vapor (1% or 10 mb) • The partial pressure of water vapor (Actual vapor pressure) ~ 10 mb – only a small fraction of the total air pressure

  12. Vapor Pressure • High actual vapor pressure indicates large numbers of water vapor molecules • Saturation Vapor Pressure: Pressure that the water vapor molecules would exert if the air were saturated with vapor at a given temperature • At higher air temperatures, it takes more water vapor to saturate the air (increase in temp leads to increased in the velocity – number of molecules escaping per second increases)

  13. Saturation vapor pressure increases with increasing temperature

  14. Relative Humidity – contd. Change in RH can come from • Change in Water pressure Content • Change in the air temperature (previous view graph) For a constant air temperature, RH increases with addition of water vapor For a constant water vapor, increase in air temperature lowers the RH Highest RH occurs in the early morning (coolest time corresponds to the highest RH); lowest RH occurs during the warmest part of the afternoon Rapid evaporation of moisture human body causes skin to crack, dry skin, itching, etc; itchy throat, etc.

  15. RH highest in the cool morning; lowest in warmest time

  16. Humidity • Assume: Air temperature in the morning is 10°C; the saturation vapor pressure is 12 mb; if the temp warms to 30 °C (water vapor content remains constant), actual vapor pressure remains the same – 12 mb, but the saturation vapor pressure has changed (temp effect) to 42 mb • RH = (12 mb/42 mb) x 100 = 29% - RH has decreased from 100% to 29% because of change in temp. • Dew Point: The temperature to which air would have to be cooled for saturation to occur (keeping air pressure or moisture content constant)

  17. Humidity – contd. • High dew point --- high water vapor content • Low dew point – low water vapor content • [Air temp – Dew Point] --- high values indicate RH is low; close to zero, RH is high; Zero implies air is saturated and the RH is ~100% • Polar Air is ‘dry’ when the RH is ~100% (Air temp and dew point are close together; low dew point temp means little water vapor in the air) • Wet-bulb Temperature: Lowest temperature that can be reached by evaporating water into the air • During summer, when wet-bulb temp is low, fast evaporation takes place from the skin

  18. Polar Air temp = -2°C; dew point = -2°C; RH=100%

  19. Desert Air temp = 35°C; dew point = -5°C; RH=16%

  20. Human body adjustment When the human body temp rises, the hypothalamus gland (gland in the brain that regulates body temp) activates the body’s heat regulating mechanism, and evaporation increases – we feel thirsty to keep up the fluid level in the body Heat Index: It is the apparent temperature of what the temperature ‘feels like’ – It takes air temp and RH into account (air temp of 100°F & RH ~60% - Heat index ~130 °F) Measurement of dew point and RH is done using Psychrometer

  21. Heat Index

  22. Sling Psychrometer • Two bulbs, one end has a piece of cloth (wick) covering the bulb – called the wet bulb is dipped in clean water – Other end is kept dry; both bulbs ventilated with by whirling the instrument or drawing air past it with an electric fan; water evaporates and thermometer cools; drier the air, greater the amount of evaporation & cooling – dry thermo gives air temp • Diff between dry and wet bulbs = wet bulk depression

  23. Humidity measurements • Large depression --- more water can evaporate into the air – RH is very low • Small depression --- little evaporation of water vapor is possible • Humidity are commonly called Hygrometers – Human humidity increases, the length of hair increases and the RH decreases, so does the hair length • Electrical Hygrometer: Plate coated with a film of carbon; electrical current sent across the plate; water vapor absorbed changes the electrical resistance of the carbon coating

  24. Hair hygrometer – changes in the length of a human or horse hair

  25. Dew, Frost, Fog • When air cools below the dew point, water vapor begins to condense upon surfaces forming tiny visible specks of water called ‘dew’ • If the air temp falls below freezing, the dew will freeze, becoming tiny beads of ice called frozen dew • When dew is seen, it will not rain; if grass is dry, rain may come • When air temp is much below freezing, water vapor can directly become ice – Deposition (opposite is sublimation) – White crystal is called frost • When RH >75%, some of the water vapor may condense onto condensation nuclei – size increases and can scatter light --- becoming haze

  26. Haze, Fog • Fog: Visibility < 1 km; air is wet with millions of tiny liquid droplets (or ice crystals), the haze becomes cloud with earth’s surface as the base • Radiation Fog or Ground Fog: Produced by the earth’s radiational cooling; most common over land in late fall & winter; ground cools so does the air directly above it, and a surface inversion forms --- moist lower layer quickly becomes saturated, and fog forms • Valley Fog: Radiation fog in a valley; heavy air drains downhill and collects in valley bottoms • How fog disappears when sun rises: Sunlight penetrates and warms the ground; temp of air increases; warm rises and mixes w/foggy air above; droplets evaporate

  27. Formation of dew; if the water freezes, frozen dew

  28. High RH of the cold air above the lake is causing the Formation of a layer of haze on a still winter morning

  29. Radiation fog nestled in a valley

  30. Fog – contd. • Advection fog: Warm, moist air moving over a colder air --- warm air cools to its saturation point, forming advection fog • Ice Fog: Marine air moves over an ice or snow surface, ice crystals form instead of water droplets – produce ice fog • Upslope fog: Fog that forms as moist air flows up along an elevated plain, hill or mountain • Evaporation (mixing) fog: Fog formed from the mixing of two unsaturated masses of air – e.g., fog produced from our breathing • Steam fog: Fog forming over lakes on autumn mornings, as cold air settles over water still warm from the summer

  31. Fog – contd. & Clouds • Precipitation (or frontal) fog: A warm rain falling through a layer of cold, moist air can produce fog • Heavy fog is more prevalent in coastal margins than in the center of the continent • In US, foggiest spot is Cape Disappointment, Washington (at the mouth of the Columbia River) • Clouds: A visible aggregate of tiny water droplets or ice crystals suspended in the air • Classification of Clouds: 10 Basic types

  32. Average annual # of days with heavy fogs in USA

  33. High Clouds (Cirrus, Ci, Cirrostratrus, Cs); Middle (Altostratus, As, Altocumulus, Ac); Low (Stratus, St, Stratocumulus, Sc, Nimbostratus, Ns); & Clouds w/vertical development (cumulus, Cu, & Cumulonimbus, Cb) • Approxi. Height of cloud bases above surface

  34. Classification of cloud • First classification (Luke Howard) based on they appear to a ground observer: • Sheetlike cloud – stratus (in Latin means ‘layer’) • Puffy cloud – cumulus (means ‘heap’) • Cirrus (means curl of hair’ • Nimbus (means ‘violent rain’) Other cloud description is based on the combination of these four basic cloud forms – e.g., nimbostratus Next classification based on the height of the cloud’s base above the surface: high clouds, middle clouds, low clouds and clouds that show vertical rather than horizontal development Altitudes separating high and middle cloud groups overlaps and varies with latitude – cirrus clouds at 4,000 m above Alaska will not be seen above Miami at the same height

  35. Cirrus clouds-6-18 km in tropics; 5-13 km in midlatitude; 3-8 km in polar region

  36. Cloud classification – contd. • High Clouds:Clouds composed of ice crystals and are thin; • Cirrus clouds usually move across the sky from west to east • cirrocumulus less seen frequently than cirrus • cirrostratus form ahead of an advancing storm; appearance of cirrostratus used to predict rain or snow within 12-24 hrs • Middle Clouds: Have bases 2-7 km; • Altocumulus: One part of the cloud is darker than the other • Altostratus: Gray or blue-gray cloud often covering entire sky or over an area that extends over many hundreds of square km; often forms ahead of storms having widespread and continuous precipitation; if precipitation takes place from this cloud, the base height lowers

  37. Cirrocumulus clouds: Less frequently seen, appear as small, rounded, white puffs

  38. Cirrostratus clouds with a halo: form ahead (12-24 hrs) of an advancing storm

  39. Altocumulus cloud: Presence in warm, humid summer morning – thunderstorms by late afternoon

  40. Altostratus cloud: Often form ahead of storms having widespread and relatively continuous precipitation

  41. Cloud classification – contd. • Low Clouds: Bases lie below 2000 m; composed of water droplets (in cold weather may contain ice crystals and snow) • Nimbostratus: Dark gray, ‘wet’-looking cloud layer; associated with continuously falling rain or snow; intensity of rain is light or moderate; never heavy, showery variety • Stratocumulus: Rain or snow rarely fall from stratocumulus • Stratus: When a thick fog ‘lifts,’ the resulting cloud is low stratus; generally no precipitation falls from the stratus Clouds with Vertical Development: Takes a variety of shapes, most often looks like a piece of floating cotton with sharp outlines and flat base; precipitation from cumulus congestus is always showery

  42. Nimbostratus cloud: associated with continuously falling rain or snow; Intensity: light to moderate

  43. Stratocumulus clouds: Rarely rain or snow fall from this cloud

  44. A layer of low-lying stratus clouds: no precipitation falls from the stratus clouds

  45. Cumulus clouds

  46. Cumulus congestus: Precipitation is always showery

  47. Cumulonimbus: Thunderstorm cloud

  48. Clouds with vertical development • Cumulonimbus is a thunderstorm cloud; condensation of water vapor --- release of energy – violent up- and down-drafts – lightning, thunder, violent tornadoes associated with the cumulonimbus Other Clouds: Lenticular clouds: formed in the wave crest ; wave is formed by the moist air crossing a mountain barrier 0rkednmoist air crossing Mammatus clouds: Formed in sinking air Condensation trail air (or contrail): Trail of Condensed vapor produced by a jet aircraft

  49. Generalized Classification of cloud type based on height

  50. Lenticular clouds (forms in crest) formed on the eastern side of the Sierra Nevada

More Related