1 / 38

First-order Transfer Function

First-order Transfer Function. Transfer function g(s): Effect of forcing system with u(t) IMPORTANT!!: g(s) is independent of u(s)!!! Fraction of two polynomials. TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A.

aaralyn
Télécharger la présentation

First-order Transfer Function

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. First-order Transfer Function Transfer function g(s): • Effect of forcing system with u(t) • IMPORTANT!!: g(s) is independent of u(s)!!! • Fraction of two polynomials H Preisig 2006: Prosessregulering / S. Skogestad 2012 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAA

  2. General Transfer Matrix The n roots(generallycomplex) ofthe polynomial d(s) arethe same as theeigenvaluesofthestatematrix A, and areknown as the «poles» ofthe system

  3. Poles and zeros • What are transfer functions effect of forcing system • What is a forced system and why do we force a system • Transfer functions G(s) of linear, time-invariant networks of first-order systems are ratios of two polynomials in s (Laplace variable which relates to frequency) • Polynomials have rootsroot in denominator G(s)   ”pole”root in numerator G(s)  0 ”zero” • Roots & dynamics • Numeratorrootsareresponsible for inverse or normal response • Denominatorrootsdeterminestability • Fast or slowdynamics H Preisig 2006: Prosessregulering

  4. Dynamicstepresponseofsome systems TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA

  5. Step Response 3 2.5 2 1.5 Amplitude 1 0.5 0 0 5 10 15 20 25 30 35 40 Time (seconds) s=tf('s') g1 = 2/(10*s+1) step(g1,50) axis([0 40 -0.2 3]) First-order system (k=2, ¿=10) /) y u g1 y(t) 63% u(t) M

  6. Initial and final values for stepresponse • Considerresponse y(t) to stepofmagnitudeM in input • Transfer function g(s) • Deviation variables for y(t) and u(t)

  7. Step Response 3 2.5 2 1.5 Amplitude 1 0.5 0 0 5 10 15 20 25 30 35 40 Time (seconds) s=tf('s') g1 = 2/(10*s+1) step(g1,50) axis([0 40 -0.2 3]) First-order system (k=2, ¿=10) /) y u g1 y(t) 63% u(t) M

  8. Step Response 3 2.5 2 1.5 Amplitude 1 0.5 0 0 5 10 15 20 25 30 35 40 Time (seconds) Larger time constant (¿=12) givesslowerdynamics s=tf('s') g1 = 2/(10*s+1), step(g1,50) axis([0 40 -0.2 3]); hold on, g2 = 2/(12*s+1), step(g2,50) g1 g2

  9. Larger steady-stategain (k=2.2) s=tf('s') g1 = 2/(10*s+1), step(g1,50) axis([0 40 -0.2 3]); hold on, g2 = 2/(12*s+1), step(g2,50) g3 = 2.2/(10*s+1), step(g3,50) g3 g1 g2

  10. Step Response 3 2.5 2 1.5 Amplitude 1 0.5 0 0 5 10 15 20 25 30 35 40 Time (seconds) Integrating system (g4=0.2/s) g1 & g4: Same initial response (slope = 0.2=k/¿) s=tf('s') g1 = 2/(10*s+1), step(g1,50) axis([0 40 -0.2 3]); hold on, g2 = 2/(12*s+1), step(g2,50) g3 = 2.2/(10*s+1), step(g3,50) g4 = 2/(10*s+0), step(g4,50) g4=0.2/s g3 g1 g2

  11. Integrating system, g(s)=k’/s • Special case of first-order system with ¿=1and k=1 but slope k’=k/¿ is finite • g(s)=k/(¿s+1) = k/(¿ s) = k’/s • Step response (u=M): y(t)/M = k’t

  12. Step Response 3 2.5 2 1.5 Amplitude 1 0.5 0 0 5 10 15 20 25 30 35 40 Time (seconds) Integrating system with time delay (g5) s=tf('s') g1 = 2/(10*s+1), step(g1,50) axis([0 40 -0.2 3]); hold on, g2 = 2/(12*s+1), step(g2,50) g3 = 2.2/(10*s+1), step(g3,50) g4 = 2/(10*s+0), step(g4,50) g5 = 2*exp(-5*s)/(10*s), step (g5,50) g4 g5 g1

  13. Step Response 3 2.5 2 1.5 Amplitude 1 0.5 0 0 5 10 15 20 25 30 35 40 Time (seconds) g1 = 2 -------- 20 s + 1 g2 = 2 ---- 20 s g3 = 2 -------- 20 s - 1 Unstable system (e.g., exothermicreactor): Signchange in denominator d(s) g2 g3 unstable Integrating system: onthe limit to unstable g1 stable Oops… Negative sign in d(s)… Unstable!

  14. Step Response 3 2.5 System: g3 Time (seconds): 21.9 2 Amplitude: 1.86 1.5 Amplitude 1 0.5 0 0 5 10 15 20 25 30 35 40 Time (seconds) «S-shaped» 2nd order responses (g2, g3, g4) made from two first-order systems in series g1 = 2/(10*s+1), step(g1,50) g2 = 2/[(10*s+1)*(10*s+1)], step(g2,50) g3 = 2/[(5*s+1)*(5*s+1)], step(g3,50) g4 = 2/[(10*s+1)*(2*s+1)], step(g4,50) g3 g4 g2 g1

  15. Step Response 3 2.5 2 1.5 Amplitude 1 0.5 0 0 5 10 15 20 25 30 35 40 Time (seconds) g1 = 2/(10*s+1) g2 = 2/[(10*s+1)*(10*s+1)] 2nd order responses Special case(g2): ¿1=¿2=¿ 98% 86% 91% (96% at t=6¿) 63% 59% First-order Second-order with¿1=¿2=¿ g1 26% g2 t=4¿ t=¿ t=2¿

  16. Step Response 3 2.5 2 1.5 Amplitude 1 0.5 0 0 5 10 15 20 25 30 35 40 Time (seconds) g1 = 2/(2*s+1), step(g1,50) g2 = 2/(2*s+1)^2, step(g2,50) g3 = 2/(2*s+1)^3, step(g3,50) g4 = 2/(2*s+1)^4, step(g4,50) g5 = 2/(2*s+1)^5, step(g5,50) g6 = 2/(2*s+1)^6, step(g6,50) g7 = 2/(2*s+1)^7, step(g7,50) n’th order responses: From n identical first-order systems in series g1 g7

  17. General 2nd order system Roots (poles, eigenvalues): Chapter 5 Special case: Two first-order in series (overdamped, ³¸ 1):

  18. Chapter 5

  19. Underdamped (Oscillating) second-order systems (³<1) • Corresponds to complex poles • Process systems: • Oscillationsareusuallycaused by (too) aggressive control • Example 1: P-controlof second-order process, k/(¿1 s+1)(¿2 s+1) • Oscillates (³<1) ifKck is large (seeexercise) • Example 2: PI-controlofintegratingprocess, k’/s • Needcontrol to stabilize • Oscillates (³<1) ifKck’ is small (seederivation SIMC PID-rules)

  20. Step Response 1.4 1.2 1 0.8 Amplitude 0.6 0.4 0.2 0 0 2 4 6 8 10 12 Time (seconds) s=tf('s') zeta=0.5, tau=1 g = 1/[(tau*s)^2 + 2*tau*zeta*s + 1] step(g) g = 1 ----------- s^2 + s + 1 >> pole(g) ans = -0.5000 + 0.8660i -0.5000 - 0.8660i

  21. Chapter 5

  22. Chapter 5 =a/b =c/a

  23. Zeros Zeros • g(s) = n(s)/d(s) • Zeros: rootsofnumerator polynomial, n(s)=0 • Example, g1(s)= (3s+1)/(10s+1)(s+1). Zero: s=-1/3 • Problem for controlif n(s) has coefficientwith different signs (positive zeros in the right half plane (RHP). Give inverse response. • Example, g2(s)= (-3s+1)/(10s+1)(s+1). Zero: s=1/3 Oops… Negative sign in n(s)… Inverse response!

  24. Zeros Step Response 2.5 2 1.5 Amplitude 1 0.5 0 0 5 10 15 20 25 30 35 40 Time (seconds) Zeros • Zeros arecommon in practise • Occurwhenthereareseveral «paths» to the output. • Example 1. • Example 2 • Example 3 g1(s) u y All coefficients positive: LHP zero g2(s) Signchange: RHP zero ) Inverse response 3 1 2 Note; Overshootsince 11.3>10

  25. Zeros Step Response 2.5 2 1.5 1 0.5 0 0 5 10 15 20 25 30 35 40 Time (seconds) 2 RHP-zero with «time constant» -0.59: Similar to delayof 0.59.

  26. Zeros Step Response 3 2.5 2 1.5 Amplitude 1 0.5 0 -0.5 0 5 10 15 20 25 30 35 40 Time (seconds) g1 = 2*(3*s+1)/[(10*s+1)*(s+1)], step(g1,50) g0 = 2/[(10*s+1)*(s+1)], step(g0,50) g2 = 2*(-3*s+1)/[(10*s+1)*(s+1)], step(g2,50) g1: LHP zero g0: No zero g2: Signchange for coeffcients in n(s) (RHP zero): Inverse response

  27. Zeros Step Response 3 2.5 2 1.5 Amplitude 1 0.5 0 -0.5 -1 0 5 10 15 20 25 30 35 40 Time (seconds) Another Inverse responseexample (RHP zero: «competingeffectswhereslowwins»). Physicalexample: Increase hot water flowwhen water heater is onmax. u = qh, y = T • s=tf(‘s’) • g1 = 1 • g2 = 2/(10*s+1) • g=g1-g2 • ans= • 10 s - 1 • --------- • 10 s + 1 g = g1 - g2,

  28. Zeros Step Response 3 2.5 2 1.5 Amplitude 1 0.5 0 -0.5 -1 0 5 10 15 20 25 30 35 40 Time (seconds) Anotherexample LHP zero: Note noovershoothere (effects in same direction) g = g1 + g2 g1 = 1 g2 = 2/(10*s+1),

  29. Zeros

  30. Zeros k1 : “slow” effect (¿1 > ¿2) k = k1+k2 Zero at z=1/¿a z1: RHP-zero (z1<0, ¿a<0) • Inverse response= Competingeffects(k’s oppsitesigns) whereslowwins(|k1|>|k2|) z2:Zero at origin (z2=0, ¿a!1) • Competingeffectwith same magnitude (k1=-k2) • Steady-stategain is zero z3: LHP-zero close to RHP (¿a> ¿1, approx) • Overshoot = Competingeffectswherefast wins z4:LHP-zero far from RHP (¿a< ¿1, approx) • No overshoot= Effects in same direction (k1and k2 same sign) Im(s) z = 1/¿a z1 z3 z4 z2 o o o o x 1/¿1 Re(s)

  31. Summary poles and zeros • Poles p (=eigenvalues of A) • Determine speed of response • p in RHP: unstable (NEED control) • P complex: oscillating response • Zeros z • Determine shape of response • z in RHP: inverse response (BAD for control)

  32. Step Response 1 0.8 0.6 0.4 0.2 Amplitude 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (seconds) Approximations of time delay s=tf('s') theta=1 g0=exp(-theta*s) % time delay. theta g1= - theta*s + 1 % RHP-zero, taua=theta g2= 1/(theta*s+1) % first order, tau=theta g3 = (-theta*s/2+1)/(theta*s/2+1) % Pade-approx h=1/(s+1) step(g0*h,g1*h,g2*h,g3*h) axis([0 5 -1 1.1]) 2 0 3 1

  33. Skogestad Half Rule* * S. Skogestad, “Simple analytic rules for model reduction and PID controller design”, J.Proc.Control, Vol. 13, 291-309, 2003 (Also reprinted in MIC)

  34. Example 1 Half rule

  35. Original 2nd order 1st-order+delay (half rule)

  36. Step Response 1 0.8 0.6 Amplitude 0.4 Step Response 0.4 0.35 0.2 0.3 0.25 0 0.2 Amplitude 0.15 0.1 -0.2 0 5 10 15 20 25 30 35 40 0.05 Time (seconds) 0 -0.05 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (seconds) s=tf('s') g=(-0.1*s+1)/[(5*s+1)*(3*s+1)*(0.5*s+1)] g1 = exp(-2.1*s)/(6.5*s+1) g2 = exp(-0.35*s)/[(5*s+1)*(3.25*s+1)] step(g,g1,g2) Example 2

  37. Example 3. Integrating process

  38. c c c c c c Approximation of LHP-zeros To make these rules more general (and not only applicable to the choice c=): Replace  (time delay) by c (desired closed-loop response time). (6 places) τc = desiredclosed-loop time constant

More Related