1 / 49

Chapter 9

Chapter 9. Passive Remote Sensing Introduction to Remote Sensing Instructor: Dr. Cheng-Chien Liu Department of Earth Sciences National Cheng-Kung University Last updated: 16 December 2004. Introduction. O ptical range  0.3 m m~14 m m Landsat series SPOT series

arav
Télécharger la présentation

Chapter 9

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 9 Passive Remote Sensing Introduction to Remote Sensing Instructor: Dr. Cheng-Chien Liu Department of Earth Sciences National Cheng-Kung University Last updated: 16 December 2004

  2. Introduction • Optical range  0.3 m m~14 m m • Landsat series • SPOT series • High spatial resolution • High spectral resolution

  3. Landsat satellite program overview • Earth Resources Technology Satellite (ERTS) 1967 • ERTS-1, 1972~1978 • Nimbus weather satellite  modified • Experimental system  test feasibility • Open skies principle • Landsat-2, 1975 (ERTS-2)

  4. Landsat satellite program overview (cont.) • Table 6.1: Characteristics of Landsat 1~6 • Return Beam Vidicon (RBV) camera systems • Multispectral Scanner system (MSS) • Thematic Mapper (TM) • Enhanced Thematic Mapper (ETM) • Table 6.2: Sensors used on Landsat 1~6 missions

  5. Orbit characteristic of Landsat-1, -2, and –3 • Fig 6.1: Landsat –1, -2, and –3 observatory configuration • 3m x 1.5m, 4m width of solar panels, 815 kg, 900 km • Inclination = 90 • To= 103 min/orbit • Fig 6.2: Typical Landsat-1, -2 and –3 daily orbit pattern • Successive orbits are about 2760km • Swath: 185km • Orbital procession  18 days for coverage repetition 20 times of global coverage per year

  6. Orbit characteristic of Landsat-1, -2, and –3 (cont.) • Sun-synchronous orbit • 9:42 am  early morning skies are generally clearer than later in the day • Pros: repeatable sun illumination conditions on the same day in every year • Cons: variable sun illumination conditions with different locations and seasons  variations in atmospheric conditions

  7. Sensors onboard Landsat-1, -2 and –3 • 3-Channel RBV • 185km x 185 km • Ground resolution: 80m • Spectral bands: 1: 0.475 mm~0.575 mm (green) 2:0.580 mm~0.680 mm (red) 3: 0.690 mm~0.830 mm (NIR) • Expose  photosensitive surface  scan  video signal • Pros: • Greater cartographic fidelity • Reseau grid  geometric correction in the recording process

  8. Sensors onboard Landsat-1, -2 and –3 (cont.) • 3-Channel RBV (cont.) • Landsat-1: malfunction  only 1690 scenes • Landsat-2  only for engineering evaluation  only occasionally RBV imagery was obtained. • Landsat-3 • Single broad band (0.505~0.75 u mm) • 2.6 times of resolution improved: 30m  double f • Two-camera side-by-side configuration with side-lap and end-lap. (Fig 6.5) • Fig 6.6: Landsat-3 RBV image

  9. Sensors onboard Landsat-1, -2 and –3 (cont.) • 4 Channel MSS • 185km x 185km • Ground resolution: 79m • Spectral band: • Band 4: 0.5 mm ~ 0.6 mm (green) • Band 5: 0.6 mm ~ 0.7 mm (red) • Band 6: 0.7 mm ~ 0.8 mm (NIR) • Band 7: 0.8 mm ~ 0.9 mm (NIR) • Band 8: 10.4~12.6 um  Landsat-3, failed • Band 4~7  band 1~4 in Landsat-4, -5 • Fig 6.7: Comparison of spectral bands

  10. Sensors onboard Landsat-1, -2 and –3 (cont.) • 4 Channel MSS (cont.) • Fig 6.8: Landsat MSS operating configuration • Small TFOV  use an oscillating scan mirror • A-to-D converter (6 bits) • Pixel width: 56m x 79m set by the pixel sampling rate (Fig 6.9) • Each Landsat MSS scene  185km x 185km • 2340 scan lines, 3240 pixels per line, 4 bands • Enormous data • Fig 6.10: Full-frame, band 5, Landsat MSS scene • Parallelogram  earth’s rotation • 15 steps • Tick marks  Lat. Long. • Annotation block • Color composite: band 4 (b), band 5 (g), band 7(r)(Fig 6.7)

  11. Sensors onboard Landsat-1, -2 and –3 (cont.) • Data distribution • Experiment  transitional  operational • NASA NOAA NASA USGS EOSAT USGS Landsat-1,-2,-3 Landsat-4,-5,-6 Landsat-7 Department of Interior Department of Commerce Department of Defense • Data receiving station • Data reprocessing • Data catalogue

  12. Orbit characteristics of Landsat-4 and -5 • Fig 6.20: Sun-synchronous orbit of Landsat-4 and –5 • Altitude: 900  705km • Retrievable by the space shuttle • Ground resolutions • Inclination 98.20 T=99min  14.5 orbit/day • 9:45 am • Fig 6.21: adjacent orbit space = 2752km • 16-day repeat cycle • 8-day phase between Landsat-4 and –5 (Fig 6.22)

  13. Sensors onboard Landsat-4 and -5 • Fig 6.23: Landsat-4 and –5 observatory configuration • MSS, TM • 2000 kg, 1.5x2.3m solar panels x 4 on one side • High gain antenna  Tracking and Data Relay Satellite system (TDRSS) • Direct transmission  X-band and S-band • MSS: 15 Mbps • TM: 85 Mbps

  14. Sensors onboard Landsat-4 and –5 (cont.) • MSS • Same as previous except for larger TFOV for keeping the same ground resolution (79m  82m) • Renumber bands • TM • 7 bands (Table 6.3) • DN: 6  8 bits • Ground resolution: 30m (thermal band: 120m) • Geometric correction  Space Oblique Mercator (SOM) cartographic projection

  15. Sensors onboard Landsat-4 and –5 (cont.) • TM (cont.) • Bi-directional scan  the rate of oscillation of mirror dwelling time  geometric integrity signal-to-noise • Detector: • MSS: 6x4=24 • TM: 16x6+4x1=100 • Fig 6.14: Thematic Mapper optical path and projection of IFOV on earth surface • Fig 6.15: Schematic of TM scan line correction process

  16. Landsat-6 planned mission • A failed mission • Enhanced Thematic Mapper (ETM) • TM+ panchromatic band (0.5~0.9 mm) with 15m resolution  pan sharpening • Monolithic detector design  coregister • Set 9-bit A-to-D converter to a high or low gain 8-bit setting from the ground. • Low reflectance  water  high gain • Bright region  deserts  low gain

  17. Landsat-7 • Launch: 1999 • Web site: http://landsat.gsfc.nasa.gov • Landsat 7 handbook • Landsat 7 in orbit • Depiction of Landsat 7

  18. Landsat-7 (cont.) • Landsat 7 Orbit • Orbital paths • Swath • Swath pattern • Landsat data • http://landsat.gsfc.nasa.gov/main/data.html

  19. Landsat-7 (cont.) • Payload • Enhanced Thematic Mapper Plus (ETM+) • Dual mode solar calibrator • Data transmission • TDRSS or stored on board. • GPS  subsequent geometric processing of the data • High Resolution Multi-spectral Stereo Imager (HRMSI) • 5m panchromatic band • 10m ETM bands 1~4 • Pointable  revisit time (<3 days) Stereo imaging. • 00~380 cross-track and 00~300 along-track

  20. Landsat-7 (cont.) • Application • Monitoring Temperate Forests • Mapping Volcanic Surface Deposits • Three Dimensional Land Surface Simulations

  21. Landsat TM Image interpretation • Pros: • Spectral and radiometric resolution • Ground resolution • Fig 6.26: MSS vs TM • Fig 6.27: All seven TM bands for a summertime image of an urban fringe area • Lake, river, ponds: b1,2 > b3 > b4=b5=b7=0 • Road urban streets: b4  min • Agricultural crops: b4  max • Golf courses

  22. Landsat TM Image interpretation (cont.) • Fig 6.27 (cont.) • Glacial ice movement: upper right  lower left • Drumlins, scoured bedrock hills • Band 7  resample from 120m to 30m • Plate 12 + Table 6.5: TM band color combinations • (a): normal color  mapping of water sediment patterns • (b): color infrared  mapping urban features and vegetation types • (c)(d): false color

  23. Landsat TM Image interpretation (cont.) • Fig 6.28: Landsat TM band 6 (thermal infrared) image • Correlation with field observations  6 gray levels  6T • Plate 13: color-composite Landsat TM image • Extremely hot  blackbody radiation  thermal infrared • TM bands 3, 4 and 7

  24. Landsat TM Image interpretation (cont.) • Fig 6.29: Landsat TM band 5 (mid-infrared) image • Timber clear-cutting • Fig 6.30: Landsat TM band 3, 4 and 5 composite • Extensive deforestation. • Fig 6.31: Landsat TM band 4 image map • 13 individual TM scenes + mosaic

  25. SPOT Satellite Program • Background • French+Sweden+Belgium • 1978 • Commercially oriented program • SPOT-1 • French Guiana, Ariane Rocket • 1986 • Linear array sensor+pushbroom scanning+pointable • Full-scene stereoscopic imaging

  26. SPOT Satellite Program (cont.) • SPOT-2 • 1990 • SPOT-3 • 1993

  27. Orbit characteristics of SPOT-1, -2 and -3 • Orbit • Circular, near-polar, sun-synchronous orbit • Altitude: 832km • Inclination: 98.70 • Descend across the equator at 10:30AM • Repeat: 26 days • Fig 6.21: SPOT revisit pattern at latitude 450 and 00 • At equator: 7 viewing opportunities exist • At 450: 11 viewing opportunities exist

  28. Sensors onboard SPOT-1, -2 and -3 • Configuration (Fig 6.34) • 223.5m, 1750 kg, solar panel: 15.6m • Modular design • High Resolution Visible (HRV) imaging system • 2-mode • 10m-resolution panchromatic mode (0.51~0.73mm) • 20m-resolution color-infrared mode. (0.5~0.59mm, 0.61~0.68mm, 0.79~0.89mm)

  29. Sensors onboard SPOT-1, -2 and –3 (cont.) • HRV (cont.) • Pushbroom scanning • No moving part (mirror)  lifespan • Dwell time  • Geometric error  • 4-CCD subarray • 6000-element subarray  panchromatic mode, 10m • Three 3000-element subarrays  multi-spectral mode, 20m • 8-bit, 25 Mbps • Twin-HRV instruments • IFOV (for each instrument)  4.130 • Swath: 60km  2 - 3km = 117km (Fig 3.36) • TFOV (for each instrument)  270=0.6045 (Fig 3.35)

  30. Sensors onboard SPOT-1, -2 and –3 (cont.) • HRV (cont.) • Data streams • Although 2-mode can be operated simultaneously, only one mode data can be transmitted  limitation of data stream • Stereoscopic imaging • Off-nadir viewing capability (Fig 6.37) • Frequency  revisit schedule (Fig 6.33) • Base-height ratio  latitude • 0.75 at equator, 0.5 at 450 • Control • Ground control station  Toulouse, France  observation sequence • Receiving station  Tordouse or Kiruna, Sweden • Tape recorded onboard • Transmitted within 2600km-radius around the station

  31. SPOT HRV image interpretation • Fig 6.38: SPOT-1 panchromatic image • 10m-resolution • Cf: Landsat MSS 80m • Cf: Landsat TM 30m (Fig 6.26) • Cf: Landsat ETM 15m (Fig 6.32) • Fig 6.39: SPOT-1 panchromatic image • Plate14: merge of multispectral & panchromatic data • Fig 6.40: SPOT-1 panchromatic image stereopair • Plate 15: Perspective view of Alps • SPOT stereopair + parallax calculation • Plate 23 • Fig 6.41: before and after the earthquake

  32. SPOT –4 and –5 • SPOT –4 • Launched 1998 • Vegetation Monitoring Instrument (VMI) • Swath: 2000km daily global coverage • Resolution: 1km • Spectral band: b(0.43~0.47mm), g(0.5~0.59mm), r(0.61~0.68mm), N-IR(0.79~0.89mm), mid-IR(1.58~1.75mm)

  33. SPOT –4 and –5 (cont.) • SPOT – 5 • Launched 2002 • Vegetation Monitoring Instrument (VMI) • Swath: 2000km daily global coverage • Resolution: 1km • Spectral band: b(0.43~0.47mm), g(0.5~0.59mm), r(0.61~0.68mm), N-IR(0.79~0.89mm), mid-IR(1.58~1.75mm)

  34. Earth Observing System • Mission to Planet Earth (MTPE) • Aims: providing the observations, understanding, and modeling capabilities needed assess the impacts of natural events and human-induced activities on the earth’s environment • Data and information system: acquire, archive and distribute the data and information collected about the earth • Further international understanding of the earth as a system

  35. Earth Observing System (cont.) • EOS (Table 6.19) • ASTER • CERES • MISR • MODIS • MOPITT • MODIS (Table 6.20) • Table 6.20 • Terra: 2000 • Aqua: 2002 • ASTER (Table 6.21)

  36. Hign-resolution satellite system • CORONA • 1960 – 1972, declassified in 1995 • KH-1 ~ KH-4B ~ KH-5 • Camera + film • Band and resolution • Web site: http://earthexplorer.usgs.gov • Impacts

  37. Hign-resolution satellite system (cont.) • IKONOS • 1999 by Space imaging • Bands and resolution • 1m-resolution • 0.45 – 0.90 mm • 4m-resolution • 0.45 – 0.52 mm • 0.52 – 0.60 mm • 0.63 – 0.69 mm • 0.76 – 0.90 mm • Orbit: sun-synchronous • Repeat coverage: 1.5 (1m) ~ 3 (4m) days

  38. Hign-resolution satellite system (cont.) • OrbView–3 and –4 • http://www.orbimage.com • OrbView-2: SeaWiFS • Will be launched soon! • Similar bands and resolution as IKONOS • OrbView–4 • 200 spectral channels in the range 0.45 – 2.5 m m at 8m resolution

  39. Hign-resolution satellite system (cont.) • QuickBird • 2001 by EarthWatch Inc. • Bands and resolution • 61cm-resolution • 0.45 – 0.89 mm • 2.44m-resolution • 0.45 – 0.52 mm • 0.52 – 0.60 mm • 0.63 – 0.69 mm • 0.76 – 0.89 mm

  40. Hyperspectral satellite system (cont.) • Earth Observing 1 (EO-1) • NASA + USGS • 21 November 2000 • One-year technology validation/demonstration mission • Landsat Data Continuity Mission (LDCM) • Hyperion • ALI

More Related