1 / 17

Heat Transfer to A fluid in a stirred tank

Group 5 Alex Guerrero Andrew Duffy Bernard Hsu Daniyal Qamar Jeff Tyska Ryan Kosak Tomi Damo March 10, 2011. Heat Transfer to A fluid in a stirred tank. Introduction. The stirred tank is an important experiment concerning the heat transfer (HT) to a fluid

aysha
Télécharger la présentation

Heat Transfer to A fluid in a stirred tank

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Group 5 • Alex Guerrero • Andrew Duffy • Bernard Hsu • DaniyalQamar • Jeff Tyska • Ryan Kosak • TomiDamo • March 10, 2011 Heat Transfer to A fluid in a stirred tank

  2. Introduction • The stirred tank is an important experiment concerning the heat transfer (HT) to a fluid • Due to the great variety of types of stirred tanks there are only a few reliable correlations. • A steam jacket allows HT to the internal liquid and aninternal cooling coil uses cold water to remove heat. • Liquid exits into a HXthat is also fed with cold water. Cooled liquid is returned to the tank.

  3. Purpose • The purpose of this laboratory experiment is to measure the heat transfer coefficient (HTC) between the fluid and the inside tank wall. • These measurements will be taken during three HT processes involving the stirred tank unit.

  4. Purpose • These three processes include: • Steady State Unbaffled Tank • Steady State Baffled Tank • Baffles deter vortexes, improving fluid mixing increases heat transfer rate. • Unsteady State UnbaffledTank • Can then determine the dependence of the HTC on the impeller speed, fluid properties, and the use of baffles.

  5. Theory • The HT terms consist of: • HTacross the internal fluid to the wall of the stirred tank • HT across the tank wall • HT from the condensing steam to the tank wall

  6. Theory • For Steady State: Q13 = U(t1-t3)A • Use this equation to solve for overall HTC. • t1 is the temp in the tank,t2 is the temp of the steam trap outlet, and A is the tank area

  7. Theory Q13 = U(t1-t3)A • Q13, HT from steam to fluid in vessel, is the difference between heat removed in cooling coils and the heat removed by the HX: Q13 = Qc – Qhx *Qc and Qhx can each be solved using Q=mCpΔt

  8. Theory • ho, the HTC at outer wall surface, can be solved using: ho = 2960 (DT,o/mst)1/3 • where DT,o is the tank diameter and mst is the mass flow rate of steam • mst can be found be calculating the volume of steam condensate collected per time interval

  9. Theory • To solve for hi, HTC at inner wall, use the relation: hi = (1/U + 1/ho)-1 • For unsteady state use the relation: AU(t1-t3) = mCp[dt3/dΘ] • In this case, [dt3/dΘ] is the slope of the graph of unsteady state heating vs. time

  10. 1 3 2 10 6 8 11 4 9 7 5 Apparatus

  11. Apparatus 12 18 17 14 15 13 16

  12. Materials

  13. Procedure • Steady State Stirred Tank (Unbaffled): • Fill tank with water to about 2 inches from top. Measure height of liquid level. • Turn on impeller motor and set to ~ 100 RPM. • Turn on cooling water to cooling coils. • Turn on cooling water to HX. • Close pump discharge and pump suction valves. Open pump bypass valve.

  14. Procedure • Steady State Stirred Tank (Unbaffled): • Turn on pump. • Open cooling water valve to steam condenser. • Open steam inlet valve. • After reaching steady state record flow rates, temperatures, and impeller speed. • Repeat for different impeller speeds. • *Note: Adjust HX flow rate to a higher temperature to obtain data for two different temperatures at constant impeller speeds.

  15. Procedure Continued • Steady State Stirred Tank (Baffled): • Repeat steps 1-10 of previous procedureusing the mechanical baffles. • Unsteady State: • Open water inlet valve, fill tank. • Close all the valves for the cooling coil and recirculation water lines. • Turn on cooling water to condenser. • Open the condenser water valve, slightly open steam valve. • Turn on the impeller. • Adjust impeller speed to speeds used in SS trials. • Open the steam valve. • Measure the temp and time intervals and record data (until reach 85 oC).

  16. Safety • Take note of equipment exposed to high heat steam and use heat gloves when necessary. • Avoid the impeller when in use. • Be cautious of water spills to prevent slipping.

  17. References • Bird, R. B., Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena. 2nd ed. New York, NY: Jonh Wiley & Sons, Inc., 2002 • Perry, Robert H., and Don W. Green. Perry's Chemical Engineers' Handbook. New York: McGraw-Hill Professional, 2007. • University of Illinois at Chicago - UIC. Web. 13 Sept. 2010. <http://www.uic.edu/depts/chme/UnitOps/entry.html>. • McCabe, Warren L., Julian C. Smith, and Peter Harriott. Unit Operations of Chemical Engineering. New York: McGraw-Hill, 1993. (pp: 1058-1065) Print. • Wankat, Phillip C. Separation Process Engineering. (2nd Edition). Boston, MA: Pearson Education, Inc., 2007. (pp: 573 – 579) Print.

More Related