1 / 8

Modelling risk ratios and risk differences

Modelling risk ratios and risk differences. …this is *new* methodology…. 2 X 2 table. p = pr(disease) … now model log(p) instead of log(p/(1-p)). Stratified analysis. Recall our post-op success example with pre-op treatment and surgery type. . cs suc tr if s==0

babu
Télécharger la présentation

Modelling risk ratios and risk differences

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Modelling risk ratios and risk differences …this is *new* methodology…

  2. 2 X 2 table • p = pr(disease) • … now model log(p) instead of log(p/(1-p))

  3. Stratified analysis

  4. Recall our post-op success example with pre-op treatment and surgery type • . cs suc tr if s==0 • | tr | • | Exposed Unexposed | Total • -----------------+------------------------+---------- • Cases | 100 5 | 105 • Noncases | 900 95 | 995 • -----------------+------------------------+---------- • Total | 1000 100 | 1100 • | | • Risk | .1 .05 | .0954545 • | | • | Point estimate | [95% Conf. Interval] • |------------------------+---------------------- • Risk difference | .05 | .0034122 .0965878 • Risk ratio | 2 | .8342841 4.79453 • +----------------------------------------------- • . cs suc tr if s==1 • | tr | • | Exposed Unexposed | Total • -----------------+------------------------+---------- • Cases | 95 500 | 595 • Noncases | 5 500 | 505 • -----------------+------------------------+---------- • Total | 100 1000 | 1100 • | | • Risk | .95 .5 | .5409091 • | | • | Point estimate | [95% Conf. Interval] • |------------------------+---------------------- • Risk difference | .45 | .3972264 .5027736 • Risk ratio | 1.9 | 1.759944 2.051202 • +-----------------------------------------------

  5. Binomial regression with log link • . binreg suc tr s ts,rr nolog • Residual df = 2196 No. of obs = 2200 • Pearson X2 = 2199.985 Deviance = 2115.866 • Dispersion = 1.001815 Dispersion = .9635093 • Bernoulli distribution, log link • ------------------------------------------------------------------------------ • | EIM • suc | Risk Ratio Std. Err. z P>|z| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • tr | 2 .892149 1.55 0.120 .8343162 4.794345 • s | 10 4.370155 5.27 0.000 4.24631 23.54986 • ts | .95 .425393 -0.11 0.909 .3949761 2.284948 • ------------------------------------------------------------------------------ • This regression analysis gives us the • ‘ratio of the 2 estimated risk ratios’ • = 1.9/2.0 = 0.95 • Compare the p-value (0.909) with the ‘test of homogeneity’ in the classical analysis

  6. 2X2 table • …now model p instead of log(p)

  7. Stratified analysis

  8. Binomial regression with an identity link • . binreg suc tr s ts,rd nolog • Residual df = 2196 No. of obs = 2200 • Pearson X2 = 2200 Deviance = 2115.866 • Dispersion = 1.001821 Dispersion = .9635093 • Bernoulli distribution, identity link • Risk difference coefficients • ------------------------------------------------------------------------------ • | EIM • suc | Coef. Std. Err. z P>|z| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • tr | .05 .0237697 2.10 0.035 .0034122 .0965878 • s | .45 .0269258 16.71 0.000 .3972264 .5027736 • ts | .4 .0359166 11.14 0.000 .3296048 .4703952 • _cons | .05 .0217945 2.29 0.022 .0072836 .0927164 • ------------------------------------------------------------------------------ • This regression analysis gives us the ‘difference between 2 estimated risk differences’

More Related