1 / 17

Electron Ring Optics Design

Electron Ring Optics Design. Alex Bogacz for MEIC Collaboration Center for Advanced Studies of Accelerators. MEIC Review September 2010. Figure-8 Collider Rings. Collider Ring size is a compromise between synchrotron radiation and space charge. total ring circumference ~1000 m

beth
Télécharger la présentation

Electron Ring Optics Design

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electron Ring Optics Design Alex Bogacz for MEIC Collaboration Center for Advanced Studies of Accelerators MEIC Review September 2010

  2. Figure-8 Collider Rings Collider Ring size is a compromise between synchrotron radiation and space charge total ring circumference ~1000 m 60 deg. crossing 3-11 GeV electrons 20-60 GeV ions (with 6 Tesla dipoles)

  3. Collider Ring Architecture • Larger Figure-8 Rings (~1000 m circumference) • 6 Tesla bends for ions at 60 GeV • Additional straights to accommodate ‘snakes’ (ions) and RF (electrons) • Horizontal IR crossing, dispersion free straights • Spin Rotators (4) at arcs ends • Electron Collider Ring based on emittance preserving Optics • FODO (1350 phase adv/cell) • FMC/DBA Optics • TEM Optics?

  4. 15 0.15 0.5 BETA_X&Y[m] PHASE_X&Y DISP_X&Y[m] 0 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 4.03051 0 Q_X Q_Y 4.03051 Electron Ring - 1350 FODO Cell E = 11 GeV phase adv/cell: Dfx,y= 1350 Arc dipoles: $Lb=110 cm $B=12.5 kGauss $ang=2.14 deg. $rho = 29.4 meter Arc quadrupoles $Lq=40 cm $G= 9kG/cm 1350 FODO offers emittance preserving optics – 〈H〉 minimum for FODO lattices Synchrotron radiation power per meter less than 20 kW/m

  5. 15 0.3 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 4.03051 Emittance preserving Optics 1350 FODO F ~〈H〉 Minimized 〈H〉 over bends H = gD2 + 2aDD’ + bD’2 F  100 Equilibrium rms emittance at 5 GeV: ex = 1.87 ×10-8 m

  6. 15 0.15 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 120 Quarter Arc Achromat 120 deg. Arc 2 dis. sup. cells 2 dis. sup. cells 26 FODO cells 60 × 1.1 meter dipoles

  7. 15 0.15 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 260 Electron Ring - Arc Optics 240 deg. Arc quarter Arc – 120 meter Straight – 20 meter quarter Arc – 120 meter

  8. 15 0.15 BETA_X&Y[m] DISP_X&Y[m] -0.15 0 0 BETA_X BETA_Y DISP_X DISP_Y 494.097 Electron Half-Ring - Lattice ×2 Arc ‘inward’ – 260 m Straight – 234 m Ring circumference – 988 m

  9. Spin Rotator - Ingredients… 15 0.15 BETA_X&Y[m] DISP_X&Y[m] -0.15 0 230 BETA_X BETA_Y DISP_X DISP_Y 320 Arc end BL = 28.7 Tesla m 8.8 0 BL = 11.9 Tesla m 4.4 0 Spin rotator ~ 46 m

  10. Locally decoupled solenoid 5 15 BETA_X&Y[m] 0 0 0 BETA_1X BETA_2Y BETA_1Y BETA_2X 17.9032 BL = 28.7 Tesla m solenoid 4.16 m solenoid 4.16 m decoupling quad insert C 0 M = - C 0

  11. Locally decoupled solenoid 1 15 BETA_X&Y[m] DISP_X&Y[m] -1 0 0 BETA_X BETA_Y DISP_X DISP_Y 17.9032 BL = 28.7 Tesla m solenoid 4.16 m solenoid 4.16 m decoupling quad insert C 0 M = - C 0

  12. Spin Rotator - Optics 1 30 BETA_X&Y[m] DISP_X&Y[m] -1 0 288 BETA_X BETA_Y DISP_X DISP_Y 374 5 GeV BL = 28.7 Tesla m 8.8 0 BL = 11.9 Tesla m 4.4 0 Spin rotator ~ 46 m

  13. Emittance preserving Optics 1 20 BETA_X&Y[m] DISP_X&Y[m] -1 0 28.5 BETA_X BETA_Y DISP_X DISP_Y 46 BL = 28.712 Tesla m Solenoid 2 Solenoid 1 8.8 deg. bend Minimized 〈H〉 over bends H = gD2 + 2aDD’ + bD’2

  14. Spin Rotator Pair - Optics 1 30 1 30 BETA_X&Y[m] BETA_X&Y[m] DISP_X&Y[m] DISP_X&Y[m] -1 -1 0 0 288 BETA_X BETA_Y DISP_X DISP_Y 374 490 BETA_X BETA_Y DISP_X DISP_Y 575 5 GeV BL = -11.8 T m -8.80 BL = -28.7 T m -4.40 4.40 BL = 28.7 T m 8.80 BL = 11.8 T m

  15. 15 15 0.3 0.3 BETA_X&Y[m] BETA_X&Y[m] DISP_X&Y[m] DISP_X&Y[m] 0 0 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 4.03051 0 BETA_X BETA_Y DISP_X DISP_Y 4.03051 Lower emittance - upgrade path E = 5 GeV E = 11 GeV 1350 FODO FMC Cell F = 100 F = 30 exeg = 1.87 ×10-8 m Minimize 〈H〉 over bends H = gD2 + 2aDD’ + bD’2

  16. 20 15 0.2 0.3 BETA_X&Y[m] DISP_X&Y[m] BETA_X&Y[m] DISP_X&Y[m] 0 0 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 4.06 0 BETA_X BETA_Y DISP_X DISP_Y 4.03051 Extreme emittance preserving Optics E = 11 GeV TEM like Cell FMC Cell F = 3 F = 30

  17. Summary • Complete design of Figure-8 Collider Rings (~ 1000 m circumference) • Emittance preserving Arcs based on 1350 FODO lattice • Compact spin rotators ‘meshed’ into the arcs • No dispersion suppression at arc end • Locally decoupled solenoid inserts • Beyond 1350FODO Optics in the arcs • FMC Optics • TEM Optics?

More Related