360 likes | 745 Vues
Rheology. Complex Fluids & Molecular Rheology Lab., Department of Chemical Engineering. 中央大學化材系講稿 10/28/2011. ●. Deformable. Small molecule. Macromolecule. 什 麼 是 流 變 ( Rheology) ?. Rheology is the science of fluids . More specifically, the study of Non-Newtonian Fluids 流體.
E N D
Rheology Complex Fluids & Molecular Rheology Lab., Department of Chemical Engineering 中央大學化材系講稿 10/28/2011
● Deformable Small molecule Macromolecule 什 麼 是 流 變(Rheology)? • Rheology is the science of fluids. More specifically, the study of Non-Newtonian Fluids • 流體 Newton’s law of viscosity 牛頓流體 - 水、有機小分子溶劑等 非牛頓流體 - 高分子溶液、膠體等 黏度η為定值 黏度不為定值 (尤其在快速流場下)
非牛頓流體的三大特徵 • 特徵時間與無因次群分析
非 牛 頓 流 體 的 特 徵 • 非牛頓黏度(Non-Newtonian Viscosity) - Shear Thinning Flow curve for non-Newtonian Fluids 牛頓流體 (甘油加水) 非牛頓流體 (高分子溶液)
正向應力差值的效應(Normal Stress Differences) - Rod-Climbing 牛頓流體 (水) 非牛頓流體 (稀薄高分子溶液)
記憶效應(Memory effects) -Elastic Recoil - Open Syphon Flow
Time-dependent effects (搖變性) Thixotropy behavior Anti-thixotropy behavior A decrease (thixotropy) and increase (anti-thixotropy) of the apparent viscosity with time at a constant rate of shear, followed by a gradual recovery when the motion is stopped • The distinction between a thixotropic fluid and a shear thinning fluid: • A thixotropic fluid displays a decrease in viscosity over time at a constant • shear rate. • A shear thinning fluid displays decreasing viscosity with increasing shear • rate.
非 牛 頓 流 體 的 不 穏 定 性: 黏 彈 性 效 應 “The mountains flowed before the Lord” [From Deborah’s Song, Biblical Book of Judges, verse 5:5], quoted by Markus Reiner at the Fourth International Congress on Rheology in 1963 • 收縮流道 - 描述非牛頓流體行為之程度 流體的特徵或 “鬆弛”時間 流動系統的特徵時間 剪切速率 非牛頓流體 (0.057%聚丙烯醯胺/葡萄糖 溶液) 牛頓流體 (葡萄糖漿)
Lubrication High-speed coating Rolling Spraying • 典型製程之流場強度範圍 Injection molding Pipe flow Chewing Extrusion Sedimentation Typical viscosity curve of a polyolefin- PP homopolymer, melt flow rate (230 C/2.16 Kg) of 8 g/10 min- at 230 C with indication of the shear rate regions of different conversion techniques. [Reproduced from M. Gahleitner, “Melt rheology of polyolefins”, Prog. Polym. Sci., 26, 895 (2001).]
小振幅反覆式剪切流: 黏性與彈性檢定 Exp b: Small-Amplitude Oscillatory Shear Flow Oscillatory shear strain, shear rate, shear stress, and first normal stress difference in small-amplitude oscillatory shear flow
It is customary to rewrite the above equations to display the in-phase and out-of-phase parts of the shear stress Storage modulus Loss modulus Storage and loss moduli, G’ and G”, as functions of frequency ω at a reference temperature of T0=423 K for the low-density polyethylene melt shown in Fig. 3.3-1. The solid curves are calculated from the generalized Maxwell model, Eqs. 5.2-13 through 15
解決流變問題的途徑為何? 傳統 vs. 現代(未來)
流體加工性質 基本流變性質 macrorheology microrheology microscopy/spectroscopy birefringence/dichroism light/ neutron scatterings particle tracking the De, Wi numbers 機械量測 光學量測 molecular orientation / alignment particle size distribution/ diffusivity micro/mesoscopic structures 本質方程式 closure approximations 分子動力理論 flow pattern monomer mobility, elastic modulus etc. flow pattern 模流分析 量子、原子、多尺度計算 物質特性(化學合成) Traditional route Modern (predictive) route
Polarizer Analyzer PMT VV and VH polarizations; θ = 30° to 150° Multi-angle dynamic/static light scattering
Morphologies of MEH-PPV Solutions translational internal 1 mg/mL MEH-PPV/toluene 1 mg/mL MEH-PPV/chloroform MEH-PPV/toluene MEH-PPV/chloroform
Flow Birefringence Measuring System 高分子溶液於流場下,會因流場大小的不同,造成高分子鏈被拉伸、旋轉與變形的程度不同,因此我們可以藉由流變儀搭配光學雙折射系統,量測高分子鏈於不同流場下的變化情形。 何謂雙折射: 當光經過非均向介質,會分解為兩道不同路徑的折射光,其一恆遵守折射率定律的正常光 (ordinary ray,o-ray ) ,其光的偏振方向,即電場振動方向是垂直於光軸,另一道即是違反折射率定律的光為異常光 (extraordinary ray,e-ray ) ,其光的偏振方向是平行於光軸。當光於雙折射材料中傳播時,因其具有兩個不同方向的主軸,光在兩軸中前進時的速度分別為C1、C2,且C1>C2,因此我們將軸向1稱為快軸 (fast axis),軸向2稱為慢軸 (slow axis)。所以光在兩分量間會有相位延遲現象產生,稱為光波相位差,我們即可從相位差中推得折射率差。 雙折射現象 為樣品厚度, 為光的波長。 流變雙折射: 高分子溶液的流動光學雙折射 (flow birefringnece) 有兩個來源:本質的雙折射 (intrinsic birefringence) 和形狀的雙折射 (form birefringence)。前者與高分子片段的非均向性極化有關,當鏈的構形發生改變時,鏈局部的非均向性會變成巨觀的非均向性,因而造成本質的雙折射。後者與高分子片段密度的非均向性相關,在稀薄溶液系統中較為重要。 光波之相位延遲
Phase modulated flow birefringence(PMFB) 分析與量測: 本實驗的光學雙折射主要基於Frattini和Fuller的相位調變系統來作量測 [Frattini and Fuller J.Rheol. 28,61(1984);Fuller et al (1985)]。假設δ和χ分別代表樣品的相位延遲量和方位角,I為接收器量測到的光強,Io為光彈調變器上的入射光強;δm代表光彈調變器的相位延遲量,δm = A sin ωt,其中A為相對相位振福,ω為光彈調變器的共振頻率。 我們即可從探測器上得到光強 推算出: 進而利用應力-光學定律進行檢測 應力-光學定律目的主要為了將光學特性轉換成流變特性。高分子流體於流場下,因流場產生的應力場使其具光學的非均向性,其主應力差值的張量與折射率差值的張量成一比例關係,其比例即為應力-光學常數C。因此,我們可利用此比例關係來進行檢驗。
實驗裝置: 實際實驗裝置 示意圖 聚苯乙烯溶液的雙折射量測結果: 以分子量200萬之聚苯乙烯溶於 DOP下,配置10wt% 的溶液進行量測,利用應力-光學定律進行檢測。 實驗結果: 固態材料 (四分之一波片) 量測結果: 相位延遲量之理論與實驗值比較 方位角之理論與實驗值比較
原理: 利用同調入射光於撞擊粒子後產生之散射光,其光程差於接收器產生的干涉原理,經由適當的分析可推知溶質在溶液中的結構與動態情形。 Small-Angle Light Scattering (SALS)
實驗校正: Fig.1Comparison of the predicted scattering pattern Fig. 2. Comparison of the form factor (the airy function) of a 50 μm pinhole with the predicted by the Mie theory with experimentally measured one. the experimentally measured one. 應用: SALS之量測角度範圍一般為1°≦θ≦10°,多半作為較大尺度結構解析之用途。其應用範圍可為高分子材料之混合(mixing)、分層(demixing)、相變化(phase changes)、結構破壞(structure break-up)、與結構整合(structure build-up)等相關研究。
Flow Wide-Angle Light Scattering 高分子在靜止狀態為捲曲體,可視為球狀體,在施加流場後高分子鏈開始變形,由球狀轉為橢圓狀,並隨流動方向排向與拉伸;藉由此系統可即時量測高分子的排向情形與拉伸變形的程度。左圖中 G為梯度方向(gradient direction),V為流體方(flow direction),χ 為方向角(orientation angle)。 簡介 流動光散射與一般光散射最大不同,在於流場下可同時觀測流體的機械性質及微觀結構變化,以更直接掌握高分子於加工過程中其微結構與分子型態的變化。此外本系統亦可搭配光纖,利用其體積小、可彎曲的特點而有效增加量測系統的靈活度。 原理 當所施加的剪切速率(shear rate)足夠壓制高分子鏈本身的轉動擴散(rotational diffusion)運動,此時高分子鏈的構形將偏離其於靜止狀態下的特性,並逐漸朝流動方向伸展與排向,同時造成高分子鏈大小與形狀(orientation)不同程度的改變(deformation)。藉由測量方向角(orientation angle,χ)以及使用Zimm-plot分析其迴旋半徑Rg,可得知流場下高分子鏈的拉伸與排向的程度。
原理與實驗分析 如圖示:方向角χ為長軸與速度梯度的夾角;θ為入射光與偵測器的夾角;ψ’為速度梯度與散射向量的夾角。 [Ellen C. Lee, Macromolecules 1997, 30, 7313-7321] 如圖:最高點為 ,利用 可得知 χ [Leeet al., Macromolecules 1997, 30, 7313-7321]
實驗裝置 本系統需依照流變儀之立體條件所設計,包含光學夾具、折射率匹配槽,雙圓心旋轉桌板等皆需自行設計。 實驗校正 本系統需確定散射光強與散射體積之比例關係,因此選用甲苯做靜態光散射校正。此外與一般光散射校正不同處為,需對自製桌板做校正及注意光纖光強之接收。 實驗裝置簡圖 雙圓心旋轉台之操作原理為,選定入射光及偵測器夾角θ後,即固定散射向量 q 的大小。此時轉動桌板後散射向量 q 與梯度方向 G 的夾角ψ’即可任意改變。
即時光學—流變系統 示意圖與功能 I. Particle Interactions II. Microstructures III. Molecular Anisotropy
Quartz couette cell (Rheology) 2-D detection (θ andφdirs.) (Flow Light Scattering) Phase-modulated light (Flow Birefringence/Dichroism) CCD camera (Flow SALS) in situ rheo-optical measuring system實體圖
多尺度分子計算 (Multiscale Computations) 無可調參數 AND 絕對預測能力?
Parameter-Free Multiscale Simulations (5) Dumbbell model & BD simulation Coarse- graining (4) Bead-chain model & BD simulation Coarse- graining (3) Ellipsoid-chain model & MC simulation (2) Monomer model & CGMD/LD simulation Coarse- graining Shie, S. C.; Hua, C. C.; Chen, S. A., Macromol. Theor. Simul.2007, 16, 111. Shie, S. C.; Lee, C. K.; Hua, C. C.; Chen, S. A., Macromol. Theor. Simul.2010, 19, 179. Lee, C. K.; Hua, C. C.; Chen, S. A., J. Chem. Phys.2010, 133, 064902. Lee, C. K.; Hua, C. C., J. Chem. Phys. 2010, 132, 224904. Lee, C. K.; Hua, C. C.; Chen, S. A., J. Phys. Chem. B2009, 113, 15937. Lee, C. K.; Hua, C. C.; Chen, S. A., J. Phys. Chem. B2008, 112, 11479. Hua, C. C.; Chen, C. L.; Chang, C. W.; Lee, C. K.; Chen, S. A., J. Rheol.2005, 49, 641. Lee, C. K.; Hua, C. C.; Chen, S. A., Macromolecules, 2011, 44, 320–324 Lee, C. K.; Hua, C. C, Optoelectronics / Book 1,( InTech, ISBN 978-953-307-276-0) Lee, C. K.; Hua, C. C.; Chen, S. A., (to be submitted). (1) Atomistic model & MD simulation Linking Quantum chemistry calculation
A Software Package under Development for Multiscale simulations Analysis tools Main program Dumbbell model & BD simulation RDF Bead-chain model & BD simulation Structure factor Ellipsoid-chain model & MC simulation Intensity Monomer model & CGMD/LD simulation Atomistic model & MD simulation Back-Mapping techniques The mutiscale simulation package developed at Complex Fluids & Molecular Rheology Laboratory by C. K. Lee, S. C. Shie, and C. C. Hua, in the Department of Chemical Engineering, National Chung Cheng University, Taiwan, R.O.C
Single-Chain Conformations of Conducting Conjugated Polymers from Solution to the Quenching State: A Multiscale Simulation PANI-EB MEH-PPV Toluene (T) Vacuum (V) Chloroform (CF) Chlorobenzene (CB) Mixed CF and T Mixed CF and CB Mixed CF and T vdw + HB + π-π vdw only Mixed CF and CB
Morphologies and Pair Interactions in Fullerene-Conjugated Oligomer Hybrids Investigated by Atomistic Molecular Dynamics
Links between Molecular dynamics and Quantum chemical calculations Force-field validation: PPV backbone, dihedral angle Energy level diagram for a donor–acceptor heterojunction: Structures refined by semi-empirical (SE) and density functional theory (DFT) Excitation energies of a single chain MEH-PPV, calculated by ZINDO/S method Chlorobenzene (CB) Mixed Nonane and CB (1:1) Quantum calculations were carried out using Gaussian 09 software package as provided by the NCHC