1 / 9

Charged Particles in Electric Fields

Charged Particles in Electric Fields. Lesson 6. Behaviour of Particles and Newton’s Laws. An electric field shows the direction and relative magnitude of an electric force. (Field theory, E = F/q) The electric force will cause an acceleration . ( Newton's Second Law)

brinly
Télécharger la présentation

Charged Particles in Electric Fields

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Charged Particles in Electric Fields Lesson 6

  2. Behaviour of Particles and Newton’s Laws • An electric field shows the direction and relative magnitude of an electric force. (Field theory, E = F/q) • The electric force will cause an acceleration. (Newton's Second Law) • An acceleration will cause an object to start moving one direction or another. (Newton's First Law) • So, if we place a charged particle in an electric field, it will start to accelerate!

  3. Recall the two categories of fields: • Non-uniform fields • Produced by single point charges or spheres • The field changes as the position of the test charge changes • Described by the equation **In a non-uniform field, the field strength is constantly changing. This makes a full analysis of the motion beyond our scope (needs calculus).

  4. 2. Uniform Fields • Produced by parallel plates field • has the same strength everywhere • Described by eqns:

  5. Examples • Two parallel plates are connected to a battery as shown. The battery supplies a potential of 2000 V. A sphere of mass 3.0 x 10-15 kg and q = +2.6 x 10-12 C is placed on the +ive plate and released. Ignoring gravity, • a) what is the motion of the sphere?

  6. b) if the separation between the plates is 4.5 cm, what is the electric field strength?

  7. Examples • A small charge of mass 5.0 x 10-4 kg traveling at 350 m/s goes into a parallel plate capacitor as shown. The separation between plates is 5.50 cm and the potential difference between plates is 1000 V. The test charge has a q = +3.00 μC. • a) Which plate is the positive plate in the capacitor?

  8. b) Assuming the charge enters at the top of the capacitor how far from the entrance will the charge hit the bottom plate?

  9. c) What is the final velocity of the particle when it hits the bottom plate?

More Related