1 / 71

Download Lab. Handouts

Download Lab. Handouts. Download Lab. #3 and Print out 3 files: http://www.mun.ca/biology/dinnes/B2250/B2250.html Quiz #2 Marks posted on Webpage. Mendelian Genetics. . . . Topics: -Transmission of DNA during cell division Mitosis and Meiosis - Segregation

casta
Télécharger la présentation

Download Lab. Handouts

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Download Lab. Handouts Download Lab. #3 and Print out 3 files: http://www.mun.ca/biology/dinnes/B2250/B2250.html Quiz #2 Marks posted on Webpage

  2. Mendelian Genetics    Topics: -Transmission of DNA during cell division Mitosis and Meiosis - Segregation - Sex linkage (problem: how to get a white-eyed female) - Inheritance and probability - Mendelian genetics in humans - Independent Assortment - Linkage - Gene mapping - 3 point test cross  - Tetrad Analysis (mapping in fungi) - Extensions to Mendelian Genetics - Gene mutation - Chromosome mutation - Quantitative and population genetics  

  3. LinkageChapter 6 - recombination - linkage maps Ch. 6 p. 148 – 165 Prob: 1-5, 7, 8, 10, 11, 14

  4. Linkage of Genes - Many more genes than chromosomes - Some genes must be linked on the same chromosome; therefore not independent

  5. Independent Assortment Linkage Fig 6-6 Fig 6-11 Interchromosomal Intrachromosomal

  6. Two ways to produce dihybrid P X X A B a b A b a B A B a b A b a B cis A B AaBb A b trans a b (dihybrid ) a B Gametes: AB P Ab ab P aB Ab R AB aB R ab

  7. Example Test Cross AaBb X aabb ab Exp. Obs. AB AaBb 25 10 R Ab Aabb 25 40 P aB aaBb 25 40 P ab aabb 25 10 R 100 100 How to distinguish: Parental high freq. Recombinant low freq.

  8. Example (cont.) Gametes: AB R Ab P aB P ab R Therefore dihybrid: A b (trans) a B

  9. Linkage Maps Genes close together on same chromosome: - smaller chance of crossovers between them - fewer recombinants Therefore: percentage recombination can be used to generate a linkage map

  10. Linkage maps A B large # of recomb. a b C D small number of recombinants c d

  11. Linkage mapsexample 65 Testcross progeny: P AaBb 2146 R Aabb 43 R aaBb 22 P aabb 2302 Total 4513 1.4 map units = 1.4 % RF 4513 A 1.4 mu B

  12. Additivity of map distances separate maps A B A C 7 2 combine maps C A B 2 7 or Locus A C B (pl. loci) 2 5

  13. Linkage Deviations from independent assortment Dihybrid gametes 2 parent (noncrossover) common 2 recombinant (crossover) rare % recombinants a function of distance between genes % RF = map distance

  14. Gametes Number of Genes Number of Different Gametes monohybrid 1 (Aa) 2 dihybrid 2 (AaBb) 4 trihybrid 3 (AaBbCc) 8

  15. Trihybrid Three Point Test Cross AaBbCc X aabbcc ABC ABc abc AbC Abc aBC aBc abC abc 8 gamete types

  16. Three Point Test Cross Trihybrid Gametes C ABC B c ABc A C AbC b c Abc a

  17. Three Point Test Cross Trihybrid AaBbCc 3 genes: Possibilities: 1. All unlinked 2. Two linked; one unlinked 3. Three linked - order ? A---B---C B---C---A B---A---C

  18. Three Point Test Cross Three recessive mutants of Drosophila: +, v vermilion eyes +, cv crossveinless +, ct cut wing P +/+ cv/cv ct/ct X v/v +/+ +/+

  19. Three Point Test Cross P +/+ cv/cv ct/ct x v/v +/+ +/+ Gametes + cv ct v + + F1 trihybrid v/+ cv/+ ct/+

  20. Three Point Test Cross F1 v/+ cv/+ ct/+ x v/v cv/cv ct/ct v cv ct 8 gamete types one gamete type

  21. 8 gamete types Parental (most frequent) F1 v/+ cv/+ ct/+ v + + 580 + cv ct 592 v cv + 45 + + ct 40 v cv ct 89 + + + 94 v + ct 3 + cv + 5 1448 Recombinant

  22. 8 gamete types Parental F1 v/+ cv/+ ct/+ v + + 580 + cv ct 592 v cv + 45 + + ct 40 v cv ct 89 + + + 94 v + ct 3 + cv + 5 1448 Recombinant 268 Recombinant Parental 268 1448 = 18.5 %

  23. 8 gamete types Parental F1 v/+ cv/+ ct/+ v + + 580 + cv ct 592 v cv + 45 + + ct 40 v cv ct 89 + + + 94 v + ct 3 + cv + 5 1448 Parental Recombinant 191 Recombinant 191 1448 = 13.2 %

  24. 8 gamete types Parental F1 v/+ cv/+ ct/+ v + + 580 + cv ct 592 v cv + 45 + + ct 40 v cv ct 89 + + + 94 v + ct 3 + cv + 5 1448 Recombinant 93 Parental Recombinant 93 1448 = 6.4 %

  25. Calculate Recombination Fraction 1. v - cv R v cv 45 + 89 R + + 40 + 94 268 / 1448 = 18.5 % 2. v - ct R + + 94 + 5 R v ct 89 + 3 191/1448 = 13.2 % 3. ct - cv R ct + 40 + 3 R + cv 45 + 5 93/1448 = 6.4 %

  26. Three point test cross Observations: all 3 RF < 50 % 3 genes on same chromosome v-----cv largest distance ct in middle map v-------ct-------cv = cv-------ct-------v 13.2 + 6.4 = 19.6 > 18.5 !! Why ?

  27. Three Point Test Cross P +/+ ct/ct cv/cv x v/v +/+ +/+ gametes + ct cv v + + F1 trihybrid v + + + ct cv

  28. Three Point Test Cross X X X X Double crossover class rarest: v---cv P v + + v + P + ct cv + cv R v ct + v + R + + cv + cv

  29. Three Point test cross 1. Double crossovers not counted in v--cv RF 2. Double crossovers generate P types (with respect to v--cv) 3. Double crossovers not detected as recombinants Consequence: underestimate of v----cv map distance Greater distance of genes  greater error

  30. Double recombinant class: (3 + 5) x 2 = 16 268 + 16 = 284 284/1448 = 19.6 NOTE: double crossovers detected because of middle gene (ct)

  31. Mapping Function Genes close together on chromosome -RF good estimate of map distance Genes far apart on chromosome - RF underestimates true map distance due to undetected multiple crossovers

  32. Mapping Function m = avg. # crossovers per meiosis (linear with true map distance) if m = 1 (1 cross over for every meiosis) then 50 % recombinants produced Therefore: map units (mu) = m x 50

  33. Mapping Function Mapping function: - relates RF to true map distance (better estimate for genes separated by large distances) m = -ln (1 - 2RF) mu = m x 50 Mapping function

  34. Mapping Function m = -ln(1 - 2RF)

  35. Mapping Functionexample 1. RF = 18.5 % m = 0.46 mu = 23.1 2. RF = 6.4 % m = 0.137 mu = 6.8 Summary: - short distances: use RF - long distances: use mapping function

  36. Linkage Other Points: 1. No crossing over in male Drosophila male: AaBb A B  gametes AB, ab a b use female dihybrid: AaBb x aabb O O

  37. Linkage 2. Linkage of genes on the X chromosome: AaBb x --Y O O Male progeny: AB Y Ab Y male progeny direct aB Y measure of female meiotic ab Y products

  38. Fungal Genetics Fungi: important organisms in the ecosystem - decomposers - pathogens important for humans - food - pathogens (Biology 4040 – Mycology)

  39. Fun Facts About Fungi http://www.herbarium.usu.edu/fungi/funfacts/factindx.htm

  40. Fungi

  41. Neurospora crassa(bread mold) Morphological mutants Biochemical mutants (one gene, one enzyme)

  42. Linkage Map Neurospora crassa Linkage group I

  43. Fungus Life Cycle vegetative stage haploid +, - mating types brief diploid stage  meiosis n n + spores + meiosis - 2n n - n

  44. Gamete Pool Gametes: Products of many meioses all pooled together A B a b AB AB ab ab AB ab P A B ab ab AB ab Ab AB Gamete P a b AB aB ab ab AB AB pool R a B ab AB AB ab R A b

  45. Tetrad Analysis Some Fungi and algae: 4 products of a single meiosis can be recovered Advantages: 1. haploid organism - no dominance 2. examine a single meiosis - test cross not needed 3. small, easy to culture 4. Tetrad Analysis - map gene to centromere

  46. Ascus with ascospores

  47. Tetrad Analysis Types of Tetrads: 1. Unordered - 4 products mixed together 2. Ordered (linear) - 4 products lined up, each haploid nucleus can be traced back through meiosis 3. Octads - mitotic division after meiosis 8 products (2 x 4)

  48. Linear Tetrad Analysis + = a+ a a a a + a + Life Cycle: + Meiosis + Diploid Haploid + Mating: a x +  a /+ n n 2n 4 haploid products

More Related