1 / 26

CHAPTER 5 NOTES

CHAPTER 5 NOTES. KONICHEK. I. Dynamics- why objects move the way they do, A.. kinematics studied how objects move 1. Isaac Newton- First to study the causes of accelerations a. summarized them in 3 laws of motion. Welcome to the concept of universal forces.

cwitt
Télécharger la présentation

CHAPTER 5 NOTES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHAPTER 5 NOTES KONICHEK

  2. I. Dynamics- why objects move the way they do, • A.. kinematics studied how objects move • 1. Isaac Newton- First to study the causes of accelerations • a. summarized them in 3 laws of motion

  3. Welcome to the concept of universal forces

  4. II.Force- a push or pull • A. 4 types of forces • 1. Gravitational- the force of attraction between all objects • a. weakest of the 4 forces • b. carried by the graviton • 1. only become significant with large amounts of mass.

  5. 2. Electromagnetic forces- the forces caused by the charges between particles- • a. carried by the photon • b. produced by the motion of charged particles. The magnetic field and the electric field vibrate at 90 to each other. • 1. act as a single force- electromagnetic force

  6. 3. Strong nuclear- this is the force which hold the nucleus together • a. strongest of the 4 forces- 100 times stronger • b. acts for very short distances • 4. Weak force-a form of EM forces • a. decay of some types of nuclei

  7. B. Grand unified theory- at some point in time all 4 forces acted as a single unified force • 1. Planck time 10-43 this is the conditions which may explain the big bang • a, all know physics breakdown at this point

  8. Isaac and his 3 laws

  9. III.Newtons Laws of Motion( Galileo based) • A. First law- an Object with no force acting on it moves with a constant velocity. • 1. unbalanced forces- This is a force which causes motion to occur. • 2. Balanced forces- equilibrium- the sum of all the forces acting on an object is zero • 3. Must assign signs to show the direction of the force • a. positive forces to the right • b. negative forces to the left • 4. To find the net force it is the summation of all the forces acting on the object. • a. if the net force is zero the velocity is zero and no motion results. • 5. Expanding the first law- an Object with no net force acting on it remains at rest or moves with a constant velocity in a straight line.

  10. EXAMPLE OF FIRST LAW • POOR LITTLE TEST TUBE

  11. Mr. Konichek testing the First Law.wow man!

  12. B. Second Law- The acceleration of a body is directly proportional to the net force and inversely proportional to its mass • 1. F=ma • 2. as force increases acceleration must increase • 3. as mass increases and force is constant the acceleration must decrease • 4. The net force on an object causes an acceleration • 5. unit for force- 1 Kgm/s2 = 1 Newton( N)

  13. HEY- 2ND LAW EXAMPLES

  14. C. Sample problems • 1. what is the net force of an object accelerating at 5m/s2 and has a mass of 500Kg? • 2. What is the acceleration of a 3000Kg truck which has a force of 8000N applied to it?

  15. D. Finding force when acceleration must be calculated, given the final velocity, and distance, • 1.initial velocity is zero( Impulse force) • a. Use Vf2= Vi2+ 2ad, solve for a: • a= Vf2-Vi2/ 2d • substitute into F=Ma • F= M(Vf2–Vi2)/2d

  16. PRACTICE, PRACTICE • 1. example - a cannon ball with a mass of 60Kg is fired from a cannon at a velocity of 70m/s. the cannon is 2.5m long, assuming the force and acceleration are constant. What would be the force on the cannon ball while it is in the barrel of the cannon? • ASSIGNMENT- PAGE 92 1-4

  17. E. Third Law of Motion- For each action force there is an opposite and equal reaction force. • 1. walking, rocket blasting off. • 2. only the force exerted on the object will cause an acceleration.

  18. Kick of a gun

  19. IV. Using Newton's Laws • A. Mass and weight- • 1. mass- the quantity of matter • 2. weight- The gravitational force exerted by a large body • a. w=mg • b. On earth. 1kg9.8m/s2= 1 Newton

  20. B. Types of masses • 1. Inertial mass- The ratio of the net force exerted on an object and it’s acceleration • a. Mi= F/a • 2. Comparison method- Compare the mass of unknown quantity to one of known quantity on a balance. • a. When the pans balance the masses are equal.

  21. C. Friction- This is the force between two surfaces which are in contact with each other. • 1. Causes- all surfaces are rough, when they rub against each other there is a weak electromagnetic bond set up between the surfaces • 2. Static Friction- This is the force which opposes the start of motion • a. Have the maximum values of frictional forces • b. Must overcome the static friction when moving something.

  22. 3. Sliding friction-The force between sliding surfaces • a. Less that the static friction • 4. Force of friction( assignment P 99- 9 and 10) • a. depends upon the force pushing the surfaces together and the nature of the surfaces in contact. • 1. Ff= MuFn (F=μFn) • a. μ(Mu)= coefficient of friction • b. Fn= Normal force- perpendicular to the line of motion • 1. It’s the sum of all the downward forces on the object. • b. We will assume the coefficient of sliding friction is independent of the surface area and velocity.

  23. D. The net force causes acceleration • 1. The acceleration of an object is the result of the net force acting on the object. • 2. The net force is the vector sum of the applied force and the frictional force • a) Fnet= Fapplied + Ffriction • b) Fnet=Fground+ weight • c) throwing up the stone Fn= Fobject+ Weight

  24. FREE FALL- • E. The fall of bodies in air • 1. In a vacuum all objects accelerate at the same rate • 2. In the atmosphere objects will fall at different rates because of air resistance • a. drag- The force of the atmosphere against a moving object- form of friction • 3. depends on: • a. size, shape, the air density, and the speed of motion.

  25. F. Universal Gravitation- all objects with mass attracts themselves directly proportional to the masses and inversely proportional to the square of the distance. • 1) F= Gm1m1/R2 • 2) G=6.67x10-11Nm2/kg2

  26. 4. Falling objects gravity is pulling harder than the drag • a. as the velocity of the object increases the drag increases until the drag force equals the pull of gravity... net force is zero • 1. the object stops accelerating... terminal velocity • 2. a falling parachutist spread eagle falls about 60m/s • 3. with the chute open 5m/s. • PRACTICE PROBLEMS ASSIGNMENT • PAGE 105 :1, P106 :4,6,8,9,10, 12,15,p 107- 22 ,24

More Related